Skip to main content
Log in

Nanostructured catalysts for direct electrooxidation of dimethyl ether based on Bi- and trimetallic Pt–Ru and Pt–Ru–Pd alloys prepared from coordination compounds

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Bi- and trimetallic platinum–ruthenium and platinum–ruthenium–palladium catalysts with specified atomic ratios Pt: Ru = 1: 1 and Pt: Ru: Pd = 1: 1: 0.1, respectively, were synthesized from the coordination compounds of the metals deposited on highly dispersed carbon black. The catalysts were characterized by powder X-ray diffraction, electron dispersive analysis, and transmission electron microscopy. According to voltammetry data, the highest activity in the dimethyl ether (DME) electrooxidation is exhibited by the catalyst Pt0.43Ru0.47Pd0.1/C; hence, it may be considered as a promising anode material for direct DME fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, M. and Dincer, I., Int. J. Energy Res., 2011, vol. 35, p. 1213.

    Article  CAS  Google Scholar 

  2. Müller, J.T., Urban, P.M., Holderich, W.F., et al., J. Electrochem. Soc., 2001, vol. 147, p. 4058.

    Article  Google Scholar 

  3. Jensen, J.O., Vassiliev, A., Olsen, M.I., et al., J. Power Sources, 2012, vol. 211, p. 173.

    Article  CAS  Google Scholar 

  4. Im, J.Y., Kim, B.S., Choi, H.G., and Cho, S.M., J. Power Sources, 2008, vol. 179, p. 301.

    Article  CAS  Google Scholar 

  5. Ueda, S., Eguchi, M., Uno, K., et al., Solid State Ionics, 2006, vol. 177, p. 2175.

    Article  CAS  Google Scholar 

  6. Yu, J.H., Choi, H.G., and Cho, S.M., Electrochem. Commun., 2005, vol. 7, p. 1385.

    Article  CAS  Google Scholar 

  7. Kerangueven, G., Coutanceau, C., Sibert, E., et al., J. Power Sources, 2006, vol. 157, p. 318.

    Article  CAS  Google Scholar 

  8. Li, Q., Wu, G., Johnston, C.M., and Zelenay, P., Electrocatalysis, 2014, vol. 5, no. p. 310.

    Article  CAS  Google Scholar 

  9. Li, Q., Wu, G., Bi, X.Z., et al., ECS Trans., 2013, vol. 50, p. 1933.

    Article  Google Scholar 

  10. Lamy, C., Léger, J.-M., and Srinivasan, S., Modern Aspects of Electrochemistry, Bockris, J. O’M. and Conway, B.E., Eds, New York: Plenum, 2000.

  11. Mizutani, I., Liu, Y., Mitsushima, S., et al., J. Power Sources, 2006, vol. 156, p. 183.

    Article  CAS  Google Scholar 

  12. Liu, Y., Muraoka, M., Mitsushima, S., et al., Electrochim. Acta, 2007, vol. 52, p. 5781.

    Article  CAS  Google Scholar 

  13. Liu, Y., Mitsushima, S., Ota, K., and Kamiya, N., Electrochim. Acta, 2006, vol. 51, p. 6503.

    Article  CAS  Google Scholar 

  14. Serov, A. and Kwak, C., Appl. Catal. B, 2009, vol. 91, p. 1.

    Article  CAS  Google Scholar 

  15. Votchenko, E.Y., Kubanova, M.S., Smirnova, N.V., and Petrii, O.A., Russ. J. Electrochem., 2010, vol. 46, p. 212.

    Article  CAS  Google Scholar 

  16. Widenhoefer, R.A., Zhong, H.A., and Buchwald, S.L., J. Am. Chem. Soc., 1997, vol. 119, p. 6787.

    Article  CAS  Google Scholar 

  17. Li, Q., Wen, X., Wu, G., et al., Angew. Chem., 2015, vol. 127, p. 7634.

    Article  Google Scholar 

  18. Bockris, J.O. and Wroblowa, H., J. Electroanal. Chem., 1964, vol. 7, p. 428.

    Google Scholar 

  19. Watanabe, M. and Motoo, M., J. Electroanal. Chem., 1975, vol. 60, p. 267.

    Article  CAS  Google Scholar 

  20. McNicol, B.D. and Short, R.T., J. Electroanal. Chem., 1977, vol. 81, p. 249.

    Article  CAS  Google Scholar 

  21. Goodenough, J.B., Hamnett, A., Kennedy, B.J., et al., J. Electroanal. Chem., 1988, vol. 240, p. 133.

    Article  CAS  Google Scholar 

  22. Hamnett, A., Weeks, S.A., Kennedy, B.J., et al., Ber. Bunsen-Ges. Phys. Chem., 1990, vol. 94, p. 1014.

    Article  CAS  Google Scholar 

  23. Jusys, Z., Kaiser, J., and Behm, R.J., Electrochim. Acta, 2002, vol. 47, p. 3693.

    Article  CAS  Google Scholar 

  24. Lu, C., Rice, C., Masel, R.I., et al., J. Phys. Chem. B, 2002, vol. 106, p. 9581.

    Article  CAS  Google Scholar 

  25. Takasu, Y., Fujiwara, T., Murakami, Y., et al., J. Electrochem. Soc., 2000, vol. 147, p. 4421.

    Article  CAS  Google Scholar 

  26. Takasu, Y., Itaya, H., Iwazaki, T., et al., Chem. Commun., 2001, p. 341.

    Google Scholar 

  27. Hills, C.W., Nashner, M.S., Frenkel, A.I., et al., Langmuir, 1999, vol. 15, p. 690.

    Article  CAS  Google Scholar 

  28. Takasu, Y., Matsuda, Y., and Toyoshima, I., Chem. Phys. Lett., 1984, vol. 108, p. 384.

    Article  CAS  Google Scholar 

  29. Mason, M.G., Phys. Rev. B: Condens. Matter. Mater. Phys., 1983, vol. 27, p. 748.

    Article  CAS  Google Scholar 

  30. Steigerwalt, S., Deluga, G.A., Cliffel, D.E., and Lukehart, C.M., J. Phys. Chem. B, 2001, vol. 105, p. 8097.

    Article  CAS  Google Scholar 

  31. Joo, S.H., Choi, S.J., Oh, I., et al., Nature, 2001, vol. 412, p. 169.

    Article  CAS  Google Scholar 

  32. Lizcano-Valbuena, W.H., Paganin, V.A., and Gonzalez, E.R., Electrochim. Acta, 2002, vol. 47, p. 3715.

    Article  CAS  Google Scholar 

  33. Pasynskii A.A. and Eremenko I.L., Usp. Khim., 1989. vol. 58, p. 303.

    Article  CAS  Google Scholar 

  34. Garcia, B.L., Captain, B., Adams, R.D., et al., J. Clust. Sci., 2007, vol. 18, p. 121.

    Article  CAS  Google Scholar 

  35. Grosshans-Vièles, S., Croizat, J.-L., Paillaud, P., et al., J. Clust. Sci., 2008, vol. 19, p. 73.

    Article  Google Scholar 

  36. Grinberg, V.A., Pasynskii, A.A., Kulova, T.L., et al., Russ. J. Electrochem., 2008, vol. 44, p. 187.

    Article  CAS  Google Scholar 

  37. Grinberg, V.A., Pasynskii, A.A., Kulova, T.L., and Skundin, A.M., III Ross. konf. po vodorodnoi energetike (III Russ. Conf. on Hydrogen Power Engineering), St.- Petersburg, 2006, p. 71.

    Google Scholar 

  38. Grinberg, V.A., Kulova, T.L., Skundin, A.M., and Pasynskii, A.A., US Patent Application no. 20070078052, 2007.

    Google Scholar 

  39. Law, C.G., Grinberg, V.A., Kulova, T.L., et al., US Patent Application, no. 2007007011084, 2007.

    Google Scholar 

  40. Grinberg, V.A., Kulova, T.L., Maiorova, N.A., et al., Russ. J. Electrochem., 2007, vol. 43, p. 75.

    Article  CAS  Google Scholar 

  41. Grinberg, V.A., Emets, V.V., Mayorova, N.A., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 11, p. 751.

    Article  CAS  Google Scholar 

  42. Mayorova, N.A., Grinberg, V.A., Emets, V.V., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 12, p. 817.

    Article  CAS  Google Scholar 

  43. Paulus, U.A., Wokaum, A., Scherer, G.G., et al., J. Phys. Chem. B, 2002, vol. 106, p. 4181.

    Article  CAS  Google Scholar 

  44. Raevskaya, V.M., Vasekin, V.V., Konobas, Yu.I., and Chemleva, T.A., Vestnik Mos. Gos. Univ., Ser. Khim., 1984, vol. 25, no. 1, p. 109.

    CAS  Google Scholar 

  45. Cordero, B., Gómez, V., Platero-Prats, A.E., et al., Dalton Trans., 2008, p. 2832.

    Google Scholar 

  46. Guo, J.S., Sun, G.Q., Wu, Z.M., et al., J. Power Sources, 2007, vol. 172, p. 666.

    Article  CAS  Google Scholar 

  47. Tyumentsev, M.S., Shiryaev, A.A., Zubavichus, Ya.V., and Anan’ev, A.V., Radiochemistry, 2014, vol. 56, no. 2, p. 150.

    Article  CAS  Google Scholar 

  48. Tyumentsev, M.S., Anan’ev, A.V., Shiryaev, A.A., et al., Dokl. Phys. Chem., 2013, vol. 450, no. 2, p. 142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Grinberg or A. A. Pasynskii.

Additional information

Original Russian Text © V.A. Grinberg, N.A. Maiorova, A.A. Pasynskii, V.V. Emets, A.A. Shiryaev, V.V. Vysotskii, V.K. Gerasimov, V.V. Matveev, E.A. Nizhnikovskii, V.N. Andreev, 2017, published in Koordinatsionnaya Khimiya, 2017, Vol. 43, No. 4, pp. 204–211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinberg, V.A., Maiorova, N.A., Pasynskii, A.A. et al. Nanostructured catalysts for direct electrooxidation of dimethyl ether based on Bi- and trimetallic Pt–Ru and Pt–Ru–Pd alloys prepared from coordination compounds. Russ J Coord Chem 43, 206–212 (2017). https://doi.org/10.1134/S1070328417040017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328417040017

Keywords

Navigation