Advertisement

Russian Journal of Coordination Chemistry

, Volume 43, Issue 3, pp 181–188 | Cite as

Synthesis, crystal structures, and antibacterial activity of copper(II) and cobalt(III) complexes derived from 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol

  • L. Xue
  • D. Deng
  • Q. WangEmail author
Article

Abstract

A new tetranuclear copper(II) complex (I) and a new mononuclear cobalt(III) complex (II) have been synthesized from the Schiff base compound 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol. The complexes have been characterized by physico-chemical and spectroscopic methods, as well as single crystal X-ray determination (CIF files CCDC nos. 1447778 (I) and 1447779 (II)). The Cu atoms in complex I are in square pyramidal coordination, and the Co atom in complex II is in octahedral coordination. Crystal structures of the complex are stabilized by hydrogen bonds and π···π interactions. The complexes and the Schiff base compound were assayed for antibacterial activities against three Gram-positive bacterial strains (B. subtilis, S. aureus, and St. faecalis) and three Gram-negative bacterial strains (E. coli, P. aeruginosa, and E. cloacae) by MTT method. As a result, the complexes showed effective antimicrobial activity against the microorganisms tested.

Keywords

Schiff base сopper(II) complex сobalt(III) complex X-ray diffraction hydrogen bonds antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zangrando, E., Islam, M.T., Islam, M.A.A.A., et al., Inorg. Chim. Acta, 2015, vol. 427, p. 278.CrossRefGoogle Scholar
  2. 2.
    Ghorbani-Choghamarani, A., Ghasemi, B., Safari, Z., et al., Catal. Commun., 2015, vol. 60, p. 70.CrossRefGoogle Scholar
  3. 3.
    Davis, K.J., Richardson, C., Beck, J.L., et al., Dalton Trans., 2015, vol. 44, no. 7, p. 3136.CrossRefGoogle Scholar
  4. 4.
    Judy-Azar, A.R. and Mohebbi, S., J. Mol. Catal. A, 2015, vol. 397, p. 158.CrossRefGoogle Scholar
  5. 5.
    Li, H.-H., Zhou, X.-X., and You, Z.-L., Chin. J. Inorg. Chem., 2013, vol. 29, no. 3, p. 649.Google Scholar
  6. 6.
    Novoa, N., Roisnel, T., Hamon, P., et al., Dalton Trans., 2015, vol. 44, no. 41, p. 18019.CrossRefGoogle Scholar
  7. 7.
    Paul, A., Anbu, S., Sharma, G., et al., Dalton Trans., 2015, vol. 44, no. 46, p. 19983.CrossRefGoogle Scholar
  8. 8.
    Niu, F., Yan, K.-X., Pang, L., et al., Inorg. Chim. Acta, 2015, vol. 435, p. 299.CrossRefGoogle Scholar
  9. 9.
    Grivani, G., Eigner, V., Dusek, M., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 7, p. 456.CrossRefGoogle Scholar
  10. 10.
    Hu, X.M., Xue, L.W., Zhao, G.Q., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 3, p. 197.CrossRefGoogle Scholar
  11. 11.
    Heffern, M.C., Reichova, V., Coomes, J.L., et al., Inorg. Chem., 2015, vol. 54, no. 18, p. 9066.CrossRefGoogle Scholar
  12. 12.
    Jing, C., Wang, C., Yan, K., et al., Bioorg. Med. Chem., 2016, vol. 24, no. 2, p. 270.CrossRefGoogle Scholar
  13. 13.
    Sarma, K., Devi, N., Kalita, M., et al., J. Coord. Chem., 2015, vol. 68, no. 20, p. 3685.CrossRefGoogle Scholar
  14. 14.
    Ghosh, M., Layek, M., Fleck, M., et al., Polyhedron, 2015, vol. 85, p. 312.CrossRefGoogle Scholar
  15. 15.
    Saha, S., Sasmal, A., Choudhury, C.R., et al., Inorg. Chim. Acta, 2015, vol. 425, p. 211.CrossRefGoogle Scholar
  16. 16.
    Keypour, H., Shooshtari, A., Rezaeivala, M., et al., Transition Met. Chem., 2015, vol. 40, no. 7, p. 715.CrossRefGoogle Scholar
  17. 17.
    Meghdadi, S., Amirnasr, M., Majedi, M., et al., Inorg. Chim. Acta, 2015, vol. 437, p. 64.CrossRefGoogle Scholar
  18. 18.
    Qian, S.-S., Cheng, X.-S., You, Z.-L., et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2013, vol. 43, no. 10, p. 1465.CrossRefGoogle Scholar
  19. 19.
    Mederos, A., Medina, A., Gili, P., et al., An. Quim., Ser. B., 1986, vol. 82, no. 3, p. 338.Google Scholar
  20. 20.
    Sheldrick, G.M., SAINT (version 6.02), SADABS (version 2.03), Bruker AXS lnc., Madison, 2002.Google Scholar
  21. 21.
    Sheldrick, G.M. SHELXL-97, A Program for Crystal Structure Solution, Göttingen Univ. of Göttingen, 1997.Google Scholar
  22. 22.
    Meletiadis, J., Meis, J.F., Mouton, J.W., et al., J. Clin. Microbiol., 2000, vol. 38, no. 8, p. 2949.Google Scholar
  23. 23.
    Ebrahimipour, S.Y., Sheikhshoaie, I., Castro, J., et al., Inorg. Chim. Acta, 2015, vol. 430, p. 245.CrossRefGoogle Scholar
  24. 24.
    Hazra, S., Martins, L.M.D.R.S., da Silva, M.F.C.G., et al., RSC Advances, 2015, vol. 5, no. 109, p. 90079.CrossRefGoogle Scholar
  25. 25.
    You, Z.-L., Xian, D.-M., Zhang, M., et al., CrystEng-Comm, 2012, vol. 14, no. 21, p. 7133.CrossRefGoogle Scholar
  26. 26.
    Taherlo, R. and Salehi, M., Inorg. Chim. Acta, 2014, vol. 418, p. 180.CrossRefGoogle Scholar
  27. 27.
    Pattanayak, P., Pratihar, J.L., Patra, D., et al., Inorg. Chim. Acta, 2014, vol. 418, p. 171.CrossRefGoogle Scholar
  28. 28.
    Khorshidifard, M., Rudbari, H.A., Kazemi-Delikani, Z., et al., J. Mol. Struct., 2015, vol. 1081, p. 494.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Modern Medical Research CenterThird Affiliated Hospital of Soochow UniversityChangzhouP. R. China

Personalised recommendations