Skip to main content
Log in

Quantum-chemical DFT model for the formation of the MN2O2, MN2O2X, or MN2O2X2 (X = S, Se) coordination mode in the bis(ligand) Ni(II), Zn(II), and Cd(II) azomethine complexes

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The molecular structures and relative energies of tetra-, penta-, and hexacoordinated stereoisomers of the bis(ligand) complexes ML2 (M = Ni(II), Zn(II), Cd(II)) with bi- and tridentate heterocyclic azomethine derivatives (coordination modes MN2O2, MN2O2X, or MN2O2X2 (X = S, Se)) are calculated using the density functional theory. The dependences of the relative stabilities of the stereoisomers of the complexes with the coordination numbers 4, 5, and 6 on the electronic configuration of the central metal atom and structural features of the ligands are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garnovskii, A.D., Nivorozhkin, A.L., and Minkin, V.I., Coord. Chem. Rev., 1993, vol. 126, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  2. Lappert, M.F. and Severn, J.R., Chem. Rev., 2002, vol. 102, no. 6, p. 3031.

    Google Scholar 

  3. Garnovskii, A.D., Vasilchenko, I.S., Garnovskii, D.A., and Kharisov. B.I., J. Coord. Chem., 2009, vol. 62, no. 2, p. 151.

    Article  CAS  Google Scholar 

  4. Garnovskii, A.D., Burlov, A.S., Vasil’chenko, I.S., et al., Russ. J. Coord. Chem., 2010, vol. 36, no. 2, p. 81.

    Article  CAS  Google Scholar 

  5. Kharabaev, N.N., Starikov, A.G., and Minkin, V.I., Dokl. Ross. Akad. Nauk, 2014, vol. 458, no. 5, p. 555.

    Google Scholar 

  6. Kharabaev, N.N., Starikov, A.G., and Minkin, V.I., Russ. J. Coord. Chem., 2015, vol. 41, no. 7, p. 421.

    Article  Google Scholar 

  7. Gastineiras, A., Fernandez-Hermida, N., Garsia-Santos, I., and Gomes-Rodriguez, L., Dalton Trans., 2012, vol. 41, p. 13486.

    Article  Google Scholar 

  8. Pattanayak, P., Pratihar, J.L., Patra, D., et al., Polyhedron, 2013, vol. 51, p. 275.

    Article  CAS  Google Scholar 

  9. Afrasiobi, Z., Stovall, P., Finley, K., et al., Spectrochim. Acta, Part A, 2013, vol. 114, p. 114.

    Article  Google Scholar 

  10. Kalita, M., Bhattacharjee, T., Gogoi, P., et al., Polyhedron, 2013, vol. 60, p. 47.

    Article  CAS  Google Scholar 

  11. Kalita, M., Gogoi, P., Barman, P., and Sarma, B., J. Coord. Chem., 2014, vol. 67, p. 2445.

    Article  CAS  Google Scholar 

  12. Pattanayak, P., Pratihar, J.L., Patra, D., et al., Inorg. Chim. Acta, 2014, vol. 418, p. 171.

    Article  CAS  Google Scholar 

  13. Shawish, H.B., Paydar, M., Looi, C.Y., et al., Transition Met. Chem., 2014, vol. 39, p. 81.

    Article  CAS  Google Scholar 

  14. Netalkar, P.P., Netalkar, S.P., and Revankar, V.K., Transition Met. Chem., 2014, vol. 39, p. 519.

    Article  CAS  Google Scholar 

  15. Hashimoto, Y., Yashinari, N., Naruse, D., et al., Inorg. Chem., 2013, vol. 52, p. 14368.

    Article  CAS  Google Scholar 

  16. Mirza, A.H., Hamid, M.H.S.A., Aripin, S., et al., Polyhedron, 2014, vol. 74, p. 16.

    Article  CAS  Google Scholar 

  17. Qiu, X.-Y., Zhang, C., Li, S.-Z., et al., Inorg. Chem. Commun., 2014, vol. 46, p. 202.

    Article  CAS  Google Scholar 

  18. Pastor-Medrano, J., Jancik, V., Bernabe-Pabio, E., et al., Inorg. Chim. Acta, 2014, vol. 412, p. 52.

    Article  CAS  Google Scholar 

  19. Lee, S.-G., Park, K.-M., Habata, Y., and Lee, S.-S., Inorg. Chem., 2013, vol. 52, p. 8416.

    Article  CAS  Google Scholar 

  20. Li, L., Li, W., Yang, S., et al., J. Coord. Chem., 2014, vol. 66, p. 2948.

    Article  Google Scholar 

  21. Zhurko, G.A. and Zhurko, D.A., Chemcraft. Version 1.6, URL: http://www. chemcraftprog.com

  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09. Revision D. 01, Wallingford Gaussian, 2013.

    Google Scholar 

  23. Parr, R. and Yang, W., Density-Functional Theory of Atoms and Molecules, New York Oxford Univ., 1989.

    Google Scholar 

  24. Becke, A.D., Phys. Rev. A, 1988, vol. 38, p. 3098.

    Article  CAS  Google Scholar 

  25. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  26. Sousa, S.F., Fernandes, P.A., and Ramos, M.J., J. Phys. Chem. A, 2007, vol. 111, no. 42, p. 10439.

    Article  CAS  Google Scholar 

  27. Burke, K. and Wagner, L.O., Int. J. Quantum Chem., 2013, vol. 113, no. 2, p. 96.

    Article  CAS  Google Scholar 

  28. Tsipis, A.C., Coord. Chem. Rev., 2014, vol. 272, p. 1.

    Article  CAS  Google Scholar 

  29. Kharabaev, N.N., Starikov, A.G., and Minkin, V.I., Russ. J. Gen. Chem., 2015, vol. 85, no. 7, p. 1698.

    Article  Google Scholar 

  30. Kharabaev, N.N., Koord. Khim., 1991, vol. 17, no. 5, p. 579.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kharabayev.

Additional information

Original Russian Text © N.N. Kharabayev, V.I. Minkin, 2017, published in Koordinatsionnaya Khimiya, 2017, Vol. 43, No. 3, pp. 131–137.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharabayev, N.N., Minkin, V.I. Quantum-chemical DFT model for the formation of the MN2O2, MN2O2X, or MN2O2X2 (X = S, Se) coordination mode in the bis(ligand) Ni(II), Zn(II), and Cd(II) azomethine complexes. Russ J Coord Chem 43, 139–146 (2017). https://doi.org/10.1134/S1070328417030022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328417030022

Keywords

Navigation