Russian Journal of Coordination Chemistry

, Volume 42, Issue 11, pp 701–710 | Cite as

Zinc(II) and cadmium(II) N,N'-Bis(2-N-Tosylaminobenzylidene) diaminodipropyliminates: Syntheses, structures, and photoluminescence properties

  • T. P. Lysakova
  • A. S. Burlov
  • V. G. Vlasenko
  • Yu. V. Koshchienko
  • G. G. Aleksandrov
  • S. I. Levchenkov
  • Ya. V. Zubavichus
  • A. S. Cheprasov
  • D. A. Garnovskii
  • A. V. Metelitsa
Article

Abstract

Chemical and electrochemical syntheses of the zinc(II) and cadmium(II) complexes with the tetradentate Schiff base (H2L), the condensation product of 2-N-tosylaminobenzaldehyde with diaminodipropylamine, are carried out. The structures, compositions, and properties of the synthesized metal complexes are studied by elemental analyses, IR spectroscopy, 1H NMR, UV spectroscopy, X-ray absorption spectroscopy, and quantum-chemical calculations. The structure of the cadmium(II) complex is determined by X-ray diffraction analysis (CIF file CCDC no. 1446393). The cadmium(II) and zinc(II) complexes exhibit luminescence in a CH2Cl2 solution in the blue spectral range (λPL = 425–428 nm) with the photoluminescence quantum yields ϕ = 0.20 and 0.75, respectively.

Key words

tetradentate Schiff bases zinc(II) and cadmium(II) complexes X-ray diffraction analysis photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chohan, Z.H., Arif, M., and Sarfraz, M., Appl. Organomet. Chem., 2007, vol. 21, p. 294.CrossRefGoogle Scholar
  2. 2.
    Kaczmarek, M.T., Jastrza, R., Holderna-Kedzia, E., and Radecka-Paryzek, W., Inorg. Chim. Acta, 2009, vol. 362, p. 3127.CrossRefGoogle Scholar
  3. 3.
    Huang, Q., Pan, Z., Wang, P., et al., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 3030.CrossRefGoogle Scholar
  4. 4.
    Miyamoto, D., Endo, N., Oku, N., et al., Biol. Pharm. Bull., 1998, vol. 21, p. 1258.CrossRefGoogle Scholar
  5. 5.
    Belicchi, Ferrari M., Bisceglie, F., Pelosia, G., et al., J. Inorg. Biochem., 2001, vol. 87, p. 137.CrossRefGoogle Scholar
  6. 6.
    Beraldo, H. and Gambino, D., Mini-Rev. Med. Chem., 2004, vol. 4, p. 31.CrossRefGoogle Scholar
  7. 7.
    Rodriguez-Arguelles, M.C., Belichi Ferrari, M., Bisceglie, F., et al., J. Inorg. Biochem., 2004, vol. 8, p. 313.CrossRefGoogle Scholar
  8. 8.
    Zhang, H., Liu, C.S., Bu, X.H., and Yang, M., J. Inorg. Biochem., 2005, vol. 99, p. 1119.CrossRefGoogle Scholar
  9. 9.
    Travnicek, Z., Krystof, V., and Sipl, M., J. Inorg. Biochem., 2006, vol. 100, p. 214.CrossRefGoogle Scholar
  10. 10.
    Sheng, X., Guo, X., Lu, X.M., et al., Bioconjugate Chem., 2008, vol. 19, p. 490.CrossRefGoogle Scholar
  11. 11.
    Tan, J., Wang, B., and Zhu, L., Bioorg. Med. Chem., 2009, vol. 17, p. 614.CrossRefGoogle Scholar
  12. 12.
    Jiang, Q., Zhu, J., Zhang, Y., et al., BioMetals, 2009, vol. 22, p. 297.CrossRefGoogle Scholar
  13. 13.
    Nakayama, A., Hiromura, M., Adachi, Y., and Sakurai, H., J. Biol. Inorg. Chem., 2008, vol. 13, p. 675.CrossRefGoogle Scholar
  14. 14.
    Sakurai, H., Yoshikawa, Y., and Yasui, H., Chem. Soc. Rev., 2008, vol. 37, p. 2383.CrossRefGoogle Scholar
  15. 15.
    Emami, S., Hosseinimehr, J., Taghdisi, S.M., and Akhlaghpoor, S., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 45.CrossRefGoogle Scholar
  16. 16.
    Burlov A.S., Vlasenko V.G., Garnovskii D.A., Uraev A.I., Maltsev A.I., Lypenko D.A., Vannikov A.V. Electroluminescent Light-Emitting Diodes Based on Metal Coordination Compounds. SFedU, Rostov-on-Don, 2015 [in Russian] p. 232.Google Scholar
  17. 17.
    Sano, T., Nishio, Y., Hamada, Y., et al., J. Mater. Chem., 2000, vol. 10, p. 157.CrossRefGoogle Scholar
  18. 18.
    Kim, S.M., Kim, J.S., Shin, D.M., et al., Bull. Kor. Chem. Soc., 2001, vol. 22, no. 7, p. 743.Google Scholar
  19. 19.
    Zhu, D., Su, Z., Mu, Z., et al., J. Coord. Chem., 2006, vol. 59, no. 4, p. 409.CrossRefGoogle Scholar
  20. 20.
    Amendola, V., Fernandez, Y.D., Mangano, C., et al., Dalton Trans., 2003, p. 4340.Google Scholar
  21. 21.
    Yu, G., Liu, Y., Song, Y., et al., Synth. Met., 2001, vol. 117, p. 211.CrossRefGoogle Scholar
  22. 22.
    Chantarasiri, N., Ruangpornvisuti, V., Muangsin, N., et al., J. Mol. Struct., 2004, vol. 701, p. 93.CrossRefGoogle Scholar
  23. 23.
    Yu, T., Su, W., Li, W., et al., Inorg. Chim. Acta, 2006, vol. 359, p. 2246.CrossRefGoogle Scholar
  24. 24.
    Yu, T., Zhang, K., Zhao, Y., et al., Inorg. Chim. Acta, 2008, vol. 361, p. 233.CrossRefGoogle Scholar
  25. 25.
    Wang, P., Hong, Z., Xie, Z., et al., Chem. Commun., 2003, p. 1664.Google Scholar
  26. 26.
    Bormejo, M.R., Vazques, M., Sanmartín, J., et al., New J. Chem., 2002, vol. 26, p. 1365.CrossRefGoogle Scholar
  27. 27.
    Metelitsa, A.V., Burlov, A.S., Bezuglyi, S.O., et al., RF Patent No. 2295527, Byull. Izobret., 2007, no. 8.Google Scholar
  28. 28.
    Metelitsa, A.V., Burlov, A.S., Bezuglyi, S.O., et al., Russ. J. Coord. Chem., 2006, vol. 32, no. 12, p. 858.CrossRefGoogle Scholar
  29. 29.
    Burlov, A.S., Vlasenko, V.G., Garnovskii, D.A., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, p. 721.CrossRefGoogle Scholar
  30. 30.
    Chernova, N.I., Ryabokobylko, Yu.S., Brudz’, V.G., and Bolotin, B.M., Zh. Org. Khim., 1971, vol. 7, no. 8, p. 1680.Google Scholar
  31. 31.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instrum. Methods Phys. Res. A, 2009, vol. 603, p. 95.CrossRefGoogle Scholar
  32. 32.
    Newville, M., J. Synchrotron Rad., 2001, no. 8, p. 96.CrossRefGoogle Scholar
  33. 33.
    Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev., 1995, vol. 52, p. 2995.CrossRefGoogle Scholar
  34. 34.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 03. Revision A.1, Pittsburgh: Gaussian, Inc., 2003.Google Scholar
  35. 35.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  36. 36.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  37. 37.
    Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, no. 2, p. 724.CrossRefGoogle Scholar
  38. 38.
    Dunning, T.H., Jr. and Hay, P.J., in Modern Theoretical Chemistry, Schaefer, H.F., III, Ed., New York: Plenum, 1977, vol. 3, p. 1.Google Scholar
  39. 39.
    CrysAlisPro, Agilent Technologies, Version 1.171.36.32.Google Scholar
  40. 40.
    Sheldrick, G.M., Program for the Refinement of Crystal Structures, Göttingen: Univ of Göttingen, 1997.Google Scholar
  41. 41.
    Bermejo, M.R., Sanmartín, J., Garcia-Deibe, A.M., et al., Inorg. Chim. Acta, 2003, vol. 3, p. 53.CrossRefGoogle Scholar
  42. 42.
    Sousa-Pedrares, A., Viqueira, J.A., Antanelo, J., et al., Eur. J. Inorg. Chem., 2011, p. 2273.Google Scholar
  43. 43.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 4, p. 342.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. P. Lysakova
    • 1
  • A. S. Burlov
    • 2
  • V. G. Vlasenko
    • 2
  • Yu. V. Koshchienko
    • 1
  • G. G. Aleksandrov
    • 3
  • S. I. Levchenkov
    • 4
  • Ya. V. Zubavichus
    • 5
  • A. S. Cheprasov
    • 4
  • D. A. Garnovskii
    • 4
  • A. V. Metelitsa
    • 1
  1. 1.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  5. 5.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations