Russian Journal of Coordination Chemistry

, Volume 42, Issue 6, pp 361–366 | Cite as

Coordination silver polymer with the bridging anion of oxadiazolylacrylic acid: Synthesis, crystal structure, and luminescence properties

  • Yu. V. Kokunov
  • Yu. E. Gorbunova
  • L. D. Popov
  • V. V. Kovalev
  • G. A. Razgonyaeva
  • S. A. Kozyukhin
  • S. A. Borodkin
Article

Abstract

Metal complex [AgL] (I) is synthesized by the reaction of AgNO3 with 3-(5-furyl-1,3,4-oxadiazol-2-yl)acrylic acid (HL, C9H6N2O4), and its crystal structure is determined (CIF file CCDC no. 1426528). The crystals are monoclinic, space group P21/n, a = 4.946(1), b = 20.084(1), c = 9.015(1) Å, β = 92.32(1)°, V = 894.482 Å3, ρcalcd = 2.442 g/cm3, Z = 4. In structure I, pairs of centrosymmetric silver atoms are bound by bidentate-bridging oxygen atoms of two anions L into dimeric blocks. The Ag–Ag distance in the dimer is 2.854(1) Å. The coordination sphere of Ag+ contains two oxygen atoms, one silver atom, and one nitrogen atom of the diazolyl fragment of the adjacent anion. The coordination polyhedron of Ag+ is a strongly distorted tetrahedron. The molecular packing of crystal I is built of infinite ribbons (AgL)n extended along the direction [001]. The photoluminescence spectrum of compound I contains intense bands about 550 nm corresponding to the green spectral range and less intense bands at 425 and 485 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pomogailo, A.D. and Dzhardimalieva, G.I., in Monomernye i polimernye karboksilaty metallov (Monomeric and Polymeric Metal Carboxylates), Moscow: Fizmatlit, 2009, p. 400.Google Scholar
  2. 2.
    Tokito, S., Noda, K., Tanaka, H., et al., Synth. Met., 2000, vols. 111–112, p. 393.CrossRefGoogle Scholar
  3. 3.
    Mehrotra, R.C. and Bohra, R., Metal Carboxylates, London: Academic, 1983, p. 396.Google Scholar
  4. 4.
    Kiskin, M.A. and Eremenko, I.L., Usp. Khim., 2006, vol. 75, p. 627.CrossRefGoogle Scholar
  5. 5.
    Dzhardimalieva, G.I. and Pomogailo, A.D., Usp. Khim., 2008, vol. 77, p. 270.CrossRefGoogle Scholar
  6. 6.
    Schubert, U., Chem. Mater., 2001, vol. 13, p. 3487.CrossRefGoogle Scholar
  7. 7.
    Metal Complexes and Metals in Macromolecules, Wohrle, D. and Pomogailo, A.D., Eds., Wiley VCH, 2003, p. 667.Google Scholar
  8. 8.
    Supported Catalysts and Their Applications, Sherrington, D.C. and Kubert, A.P., Eds., Cambridge: Royal Soc. Chem., 2001. P. 250.Google Scholar
  9. 9.
    Petukhova, M.V., Petrochenkova, N.V., Mirochnik, A.G., et al., Vysokomol. Soedin., Ser. B, 2002, vol. 44, p. 1267.Google Scholar
  10. 10.
    Ling, Q.D., Cai, Q.L., Kang, E.T., et al., J. Mater. Chem., 2004, vol. 14, p. 2741.CrossRefGoogle Scholar
  11. 11.
    Ling, Q., Yang, M., Wu, Z., et al., Polymer, 2001, vol. 42, p. 4605.CrossRefGoogle Scholar
  12. 12.
    Gao, M.Y., Yang, Y., Yang, B., et al., Chem. Commun., 1994, p. 2779.Google Scholar
  13. 13.
    Volkov, A.V., Moskvina, M.A., Karachevtsev, I.V., et al., Vysokomol. Soedin., Ser. A, 1998, vol. 40, p. 45.Google Scholar
  14. 14.
    Liu, G. Yan, X., Lu, Z., et al., Chem. Mater., 2005, vol. 17, p. 4985.CrossRefGoogle Scholar
  15. 15.
    Hu, N.X., Esteghamatian, M., Xie, S., et al., Adv. Mater., 1999, vol. 11, no. 17, p. 1460.CrossRefGoogle Scholar
  16. 16.
    Wang, J.F., Jabbour, G.E., Mash, E.A., et al., Adv. Mater., 1999, vol. 11, no. 15, p. 1266.CrossRefGoogle Scholar
  17. 17.
    Feng, L., Wang, X., and Chena, Zh., Spectrochim. Acta, Part A, 2008, vol. 11, p. 312.CrossRefGoogle Scholar
  18. 18.
    Tang, H., Zhang, Zh., Yuan, J., et al., Synth. Met., 2009, vol. 159, p. 72.CrossRefGoogle Scholar
  19. 19.
    Doroshenko, A.O., Posokhov, E.A., Verezubova, A.A., and Ptyagina, L.M., J. Phys. Org. Chem., 2000, vol. 13, no. 5, p. 253.CrossRefGoogle Scholar
  20. 20.
    Mikhailov, I.E., Popov, L.D., Vikrishchuk, N.E., et al., Russ. J. Gen. Chem., 2015, vol. 85, no. 1, p. 203.CrossRefGoogle Scholar
  21. 21.
    Brammer, L., Bargard, M.D., Rodger, C.S., et al., Chem. Commun., 2001, p. 2468.Google Scholar
  22. 22.
    Kokunov, Yu.V., Gorbunova, Yu.E., and Kovalev, V.V., Russ. J. Inorg. Chem., 2008, vol. 53, no. 12, p. 1885.CrossRefGoogle Scholar
  23. 23.
    Che, C.-M., Tse, M.-C., Chan, C.W., et al., J. Am. Chem. Soc., 2000, vol. 122, p. 2464.CrossRefGoogle Scholar
  24. 24.
    Sun, D., Cao, R., Weng, J., et al., Dalton Trans., 2002, p. 291.Google Scholar
  25. 25.
    Chen, C.-Y., Zeng, J.Y., and Lee, H.M., Inorg. Chim. Acta, 2007, vol. 360, p. 21.CrossRefGoogle Scholar
  26. 26.
    Zheng, X.-F. and Zhu, L.-G., CrystEngComm, 2010, vol. 12, p. 2878.CrossRefGoogle Scholar
  27. 27.
    Tong, M.-L., Shi, J.-X., and Chen, X.-M., New J. Chem., 2002, vol. 26, p. 814.CrossRefGoogle Scholar
  28. 28.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.CrossRefGoogle Scholar
  29. 29.
    Xie, L.-X., Wei, M.-L., Duan, C.-Y., et al., Inorg. Chim. Acta, 2007, vol. 360, p. 2541.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. V. Kokunov
    • 1
  • Yu. E. Gorbunova
    • 1
  • L. D. Popov
    • 2
  • V. V. Kovalev
    • 1
  • G. A. Razgonyaeva
    • 1
  • S. A. Kozyukhin
    • 1
  • S. A. Borodkin
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations