Russian Journal of Coordination Chemistry

, Volume 41, Issue 2, pp 69–75 | Cite as

Binuclear copper(II) complex with bis(azomethine) based on 1,3-diaminopropan-2-ol and 4-hydroxy-3-formylcoumarin: Crystal structure and magnetic properties

  • I. N. Shcherbakov
  • S. I. Levchenkov
  • L. D. Popov
  • G. G. Aleksandrov
  • L. N. Etmetchenko
  • V. A. Kogan
Article

Abstract

The binuclear copper(II) complex [Cu2(L)(Mp)(H2O)((CH3)2SO)] (Mp is 6-methoxypurinate anion) with the heterocyclic azomethine ligand, which is the condensation product of 1,3-diaminopropan-2-ol and 4-hydroxy-3-formylcoumarin (H3L), is synthesized and structurally characterized (CIF file CCDC no. 982199). The temperature dependence of the magnetic susceptibility is measured and shows a significant exchange interaction of the antiferromagnetic type (2J = −348 cm−1) in the compound. This sharply distinguishes the new complex from the earlier studied compounds with a similar exchange fragment characteristic of the ferromagnetic exchange. The antiferromagnetic exchange parameter is calculated by the quantum-chemical DFT method in the broken symmetry approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.CrossRefGoogle Scholar
  2. 2.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Izv. Akad. Nauk, Ser. Khim., 2014, vol. 63, no. 3, p. 673.Google Scholar
  3. 3.
    Wang, L.-L., Sun, Y.-M., Qi, Z.-N., and Liu, C.-B., J. Phys. Chem. A, 2008, vol. 112, no. 36, p. 8418.CrossRefGoogle Scholar
  4. 4.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2008, vol. 252, nos. 18–20, p. 1871.CrossRefGoogle Scholar
  5. 5.
    Vigato, P.A., Peruzzo, V., and Tamburini, S., Coord. Chem. Rev., 2012, vol. 256, nos. 11–12, p. 953.CrossRefGoogle Scholar
  6. 6.
    Kahn, O., Molecular Magnetism, New York: VCH, 1993.Google Scholar
  7. 7.
    Bleaney, B. and Bowers, K.D., Proc. R. Soc. London. A, 1952, vol. 214, no. 9, p. 451.CrossRefGoogle Scholar
  8. 8.
    SMART and SAINT. Release 5.0. Area Detector Control and Integration Software, Madison: Bruker AXS, Analytical X-ray Instruments, 1998.Google Scholar
  9. 9.
    Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-Detector X-ray Data, Göttingen: Univ. of Göttingen, 1999.Google Scholar
  10. 10.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  11. 11.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  12. 12.
    Becke, A.D., Phys. Rev. A, 1988, vol. 38, no. 6, p. 3098.CrossRefGoogle Scholar
  13. 13.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785.CrossRefGoogle Scholar
  14. 14.
    Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Yu.P., et al., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 28, p. 5033.Google Scholar
  15. 15.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., et al., J. Coord. Chem., 2008, vol. 61, no. 3, p. 392.CrossRefGoogle Scholar
  16. 16.
    Ginsberg, A.P., J. Am. Chem. Soc., 1980, vol. 102, no. 1, p. 111.CrossRefGoogle Scholar
  17. 17.
    Noodleman, L., Peng, C.Y., Case, D.A., and Mouesca, J.-M., Coord. Chem. Rev., 1995, vol. 144, p. 199.CrossRefGoogle Scholar
  18. 18.
    Lacroix, P.G. and Daran, J.-C., J. Dalton Trans., 1997, no. 8, p. 1369.Google Scholar
  19. 19.
    Soda, T., Kitagawa, Y., Onishi, T., et al., Chem. Phys. Lett., 2000, vol. 319, nos. 3–4, p. 223.CrossRefGoogle Scholar
  20. 20.
    Gaussian 03. Revision D.01, Wallingford: Gaussian Inc., 2004.Google Scholar
  21. 21.
    Milevskii, B.G., Chibisova, T.A., Solov’eva, N.P., et al., Khim. Geterotsikl. Soed., 2012, vol. 48, no. 12, p. 1903.Google Scholar
  22. 22.
    Traven’, V.F., Ivanov, I.V., Lebedev, V.S., et al., Izv. Akad. Nauk, Ser. Khim., 2010, vol. 59, no. 8, p. 1565.Google Scholar
  23. 23.
    Traven, V.F., Ivanov, I.V., Lebedev, V.S., et al., Mendeleev Commun., 2009, vol. 19, no. 4, p. 214.CrossRefGoogle Scholar
  24. 24.
    Chou, Y.-C., Huang, S.-F., Koner, R., et al., Inorg. Chem., 2004, vol. 43, no. 9, p. 2759.CrossRefGoogle Scholar
  25. 25.
    Lai, T.-C., Chen, W.-H., Lee, C.-J., et al., J. Mol. Struct., 2009, vol. 935, no. 1, p. 97.CrossRefGoogle Scholar
  26. 26.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, p. 1.CrossRefGoogle Scholar
  27. 27.
    Onofrio, N. and Mouesca, J.-M., J. Phys. Chem. A, 2010, vol. 114, no. 20, p. 6149.CrossRefGoogle Scholar
  28. 28.
    Comba, P., Hausberg, S., and Martin, B., J. Phys. Chem. A, 2009, vol. 113, no. 24, p. 6751.CrossRefGoogle Scholar
  29. 29.
    Ciofini, I. and Daul, C.A., Coord. Chem. Rev., 2003, vols. 238–239, p. 187.CrossRefGoogle Scholar
  30. 30.
    Illas, F., de P.R. Moreira, I., Bofill, J.M., and Filatov, M., Phys. Rev. B, 2004, vol. 70, no. 13, p. 132414.CrossRefGoogle Scholar
  31. 31.
    Ruiz, E., Cano, J., Alvarez, S., and Alemany, P., J. Comput. Chem., 1999, vol. 20, no. 13, p. 1391.CrossRefGoogle Scholar
  32. 32.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. J. Coord. Chem., 2014, vol. 40, no. 8, p. 523.CrossRefGoogle Scholar
  33. 33.
    Kou, Y., Tian, J., Li, D., et al., Dalton Trans., 2009, no. 13, p. 2374.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. N. Shcherbakov
    • 1
  • S. I. Levchenkov
    • 2
  • L. D. Popov
    • 1
  • G. G. Aleksandrov
    • 3
  • L. N. Etmetchenko
    • 1
  • V. A. Kogan
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations