Russian Journal of Coordination Chemistry

, Volume 41, Issue 1, pp 1–15 | Cite as

Modern studies in the area of molecular magnets: State, problems, and prospects

  • V. V. Lukov
  • V. A. Kogan
  • S. I. Levchenkov
  • I. N. Shcherbakov
  • L. D. Popov
Article

Abstract

The review considers the theoretical foundations and some recent results of investigations of the specific class of magnetically active materials: molecular magnets (single-molecule magnets) and molecular magnets with the linear chain structure (single-chain magnets). Possibilities and promising approaches to controlling their magnetic properties are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khan, O., Chemistry and physics of supramolecular magnetic materials, Acc. Chem. Res., 2000, vol. 33, no. 10, p. 647.Google Scholar
  2. 2.
    Dei, A. and Gatteschi, D., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, no. 50, p. 11852.Google Scholar
  3. 3.
    Minkin, V.I., Izv. Akad. Nauk, Ser. Khim., 2008, vol. 57, no. 4, p. 673.Google Scholar
  4. 4.
    Sessoli, R., Gatteschi, D., Ganeschi, A., and Novak, H.A., Nature, 1993, vol. 365, no. 6442, p. 141.Google Scholar
  5. 5.
    Christou, G., Gatteschi, D., Hendrickson, D.N., and Sessoli, R., MRS Bull., 2000, vol. 25, no. 11, p. 66.Google Scholar
  6. 6.
    Lukov, V.V., Kogan, V.A., Shcherbakov, I.N., et al., Vestn. YuNTs RAN, 2011, vol. 7, no. 1, p. 24.Google Scholar
  7. 7.
    Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D.N., and Christou, G., Nature, 2002, vol. 416, no. 6877, p. 406.Google Scholar
  8. 8.
    Lehmann, J., Gaita-Arino, A., Coronado, E., and Loss, D., Nat. Nanotechnol., 2007, vol. 2, no. 5, p. 312.Google Scholar
  9. 9.
    Hill, S., Edwards, R.S., Aliaga-Alcalde, N., and Christou, G., Science, 2003, vol. 302, no. 5647, p. 1015.Google Scholar
  10. 10.
    Bogani, L. and Wernsdorfer, W., Nat. Mater., 2008, vol. 7, no. 3, p. 179.Google Scholar
  11. 11.
    Troiani, F. and Affronte, M., Chem. Soc. Rev., 2011, vol. 40, no. 6, p. 3119.Google Scholar
  12. 12.
    Gatteschi, D. and Sessoli, R., Angew. Chem., Int. Ed. Engl., 2003, vol. 42, no. 3, p. 268.Google Scholar
  13. 13.
    Thomas, L., Lionti, F., Ballou, R., et al., Nature, 1996, vol. 383, no. 6596, p. 145.Google Scholar
  14. 14.
    Wernsdorfer, W. and Sessoli, R., Science, 1999, vol. 284, no. 5411, p. 133.Google Scholar
  15. 15.
    Aubin, S.M.J., Wemple, M.W., Adams, D.M., et al., J. Am. Chem. Soc., 1996, vol. 118, no. 33, p. 7746.Google Scholar
  16. 16.
    Milios, C.J., Raptopoulou, C.P., Terzis, A., et al., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, no. 2, p. 210.Google Scholar
  17. 17.
    Sangregorio, C., Ohm, T., Paulsen, C., et al., Phys. Rev. Lett., 1997, vol. 78, no. 24, p. 4645.Google Scholar
  18. 18.
    Tasiopoulos, A.J., Vinslava, A., Wernsdorfer, W., et al., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, no. 16, p. 2117.Google Scholar
  19. 19.
    Ako, A.M., Hewitt, L.J., Mereacre, V., et al., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, no. 30, p. 4926.Google Scholar
  20. 20.
    Milios, C.J., Vinslava, A., Wernsdorfer, W., et al., J. Am. Chem. Soc., 2007, vol. 129, no. 10, p. 2754.Google Scholar
  21. 21.
    Freedman, D.E., Harman, W.H., Harris, T.D., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 4, p. 1224.Google Scholar
  22. 22.
    Zadrozny, J.M. and Long, J.R., J. Am. Chem. Soc., 2011, vol. 133, no. 51, p. 20732.Google Scholar
  23. 23.
    Ishikawa, N., Sugita, M., Ishikawa, T., et al., J. Am. Chem. Soc., 2003, vol. 125, no. 29, p. 8694.Google Scholar
  24. 24.
    Tang, J., Hewitt, I., Madhu, N.T., et al., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, no. 11, p. 1729.Google Scholar
  25. 25.
    Guo, Y.-N., Xu, G.-F., Gamez, P., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 25, p. 8538.Google Scholar
  26. 26.
    Blagg, R.J., Muryn, C.A., McInnes, E.J.L., et al., Angew. Chem. Int. Ed., 2011, vol. 50, no. 29, p. 6530.Google Scholar
  27. 27.
    Woodruff, D.N., Winpenny, R.E.P., and Layfield, R.A., Chem. Rev., 2013, vol. 113, no. 7, p. 5110.Google Scholar
  28. 28.
    Zhang, P., Guo, Y.-N., and Tang, J., Coord. Chem. Rev., 2013, vol. 257, nos. 11–12, p. 1728.Google Scholar
  29. 29.
    Sessoli, R., Tsai, H.L., Schake, A.R., et al., J. Am. Chem. Soc., 1993, vol. 115, no. 5, p. 1804.Google Scholar
  30. 30.
    Bagai, R. and Christou, G., Chem. Soc. Rev., 2009, vol. 38, no. 4, p. 1011.Google Scholar
  31. 31.
    Sun, Z., Hendrickson, D.N., Grant, C.M., et al., Chem. Commun., 1998, no. 6, p. 721.Google Scholar
  32. 32.
    Boudalis, A.K., Sanakis, Y., Clemente-Juan, J.M., et al., Chem.-Eur. J., 2008, vol. 14, no. 8, p. 2514.Google Scholar
  33. 33.
    Ako, A.M., Mereacre, V., Lan, Y., et al., Inorg. Chem., 2010, vol. 49, no. 1, p. 1.Google Scholar
  34. 34.
    Moubaraki, B., Murray, K.S., Hudson, T.A., and Robson, R., Eur. J. Inorg. Chem., 2008, vol. 2008, no. 29, p. 4525.Google Scholar
  35. 35.
    Murray, K.S., Aust. J. Chem., 2009, vol. 62, no. 9, p. 1081.Google Scholar
  36. 36.
    Murrie, M., Chem. Soc. Rev., 2010, vol. 39, no. 6, p. 1986.Google Scholar
  37. 37.
    Bell, A., Aromi, G., Teat, S.J., et al., Chem. Commun., 2005, no. 22, p. 2808.Google Scholar
  38. 38.
    Aromi, G., Parsons, S., Wernsdorfer, W., et al., Chem. Commun., 2005, no. 40, p. 5038.Google Scholar
  39. 39.
    Cremades, E., Cano, J., Ruiz, E., et al., Inorg. Chem., 2009, vol. 48, no. 16, p. 8012.Google Scholar
  40. 40.
    Inglis, R., Jones, L.F., Milios, C.J., et al., Dalton Trans., 2009, no. 18, p. 3403.Google Scholar
  41. 41.
    Gatteschi, D., Sessoli, R., and Villian, J., Molecular Nanomagnets, New York: Oxford Univ., 2006.Google Scholar
  42. 42.
    Cirera, J., Ruiz, E., Alvarez, S., et al., Chem.-Eur. J., 2009, vol. 15, no. 19, p. 4078.Google Scholar
  43. 43.
    Oshio, H. and Nakano, M., Chem.-Eur. J., 2005, vol. 11, no. 18, p. 5178.Google Scholar
  44. 44.
    Ruiz, E., Cirera, J., Cano, J., et al., Chem. Commun., 2008, no. 1, p. 52.Google Scholar
  45. 45.
    Kubo, K., Shiga, T., Yamamoto, T., et al., Inorg. Chem., 2011, vol. 50, no. 19, p. 9337.Google Scholar
  46. 46.
    Coronado, E. and Galan-Mascaros, J.R., J. Mater. Chem., 2005, vol. 15, no. 1, p. 66.Google Scholar
  47. 47.
    Alberola, A., Coronado, E., and Galan-Mascaros, J.R., J. Am. Chem. Soc., 2003, vol. 125, no. 36, p. 10774.Google Scholar
  48. 48.
    Galan-Mascaros, J.R., Coronado, E., Goddard, P.A., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 27, p. 9271.Google Scholar
  49. 49.
    Coronado, E., Marti-Gastaldo, C., Navarro-Morutalla, E., et al., Nat. Chem., 2010, vol. 2, no. 12, p. 1031.Google Scholar
  50. 50.
    Hiraga, H., Miyasaka, H., Clerac, R., et al., Inorg. Chem., 2009, vol. 48, no. 7, p. 2887.Google Scholar
  51. 51.
    Peng, J.-B., Zhang, Q.-C., Kong, X.-J., et al., J. Am. Chem. Soc., 2012, vol. 134, no. 7, p. 3314.Google Scholar
  52. 52.
    Manoli, M., Collins, A., Parsons, S., et al., J. Am. Chem. Soc., 2008, vol. 130, no. 33, p. 11129.Google Scholar
  53. 53.
    Evangelisti, M. and Brechin, E.K., Dalton Trans., 2010, vol. 39, no. 20, p. 4672.Google Scholar
  54. 54.
    Sharples, J.W., Zheng, Y.-Z., Tuna, F., et al., Chem. Commun., 2011, vol. 47, no. 27, p. 7650.Google Scholar
  55. 55.
    Zheng, Y.-Z., Evangelisti, M., and Winpenny, R.E.P., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, no. 16, p. 3692.Google Scholar
  56. 56.
    Zheng, Y.-Z., Evangelisti, M., Tuna, F., and Winpenny, R.E.P., J. Am. Chem. Soc., 2012, vol. 134, no. 2, p. 1057.Google Scholar
  57. 57.
    Jiang, S.-D., Wang, B.-W., Sun, H.-L., et al., J. Am. Chem. Soc., 2011, vol. 133, no. 13, p. 4730.Google Scholar
  58. 58.
    Guo, Y.-N., Xu, G.-F., Wernsdorfer, W., et al., J. Am. Chem. Soc., 2011, vol. 133, no. 31, p. 11948.Google Scholar
  59. 59.
    Car, P.-E., Perfetti, M., Mannini, M., et al., Chem. Commun., 2011, vol. 47, no. 13, p. 3751.Google Scholar
  60. 60.
    Rinehart, J.D., Meihaus, K.R., and Long, J.R., J. Am. Chem. Soc., 2010, vol. 132, no. 22, p. 7572.Google Scholar
  61. 61.
    Ferrando-Soria, J., Pardo, E., Ruiz-Garcia, R., et al., Chem.-Eur. J., 2011, vol. 17, no. 7, p. 2176.Google Scholar
  62. 62.
    Yoon, J.H., Lee, J.W., Ryu, D.W., et al., Inorg. Chem., 2011, vol. 50, no. 22, p. 11306.Google Scholar
  63. 63.
    Escuer, A., Vlahopoulou, G., and Mautner, F.A., Inorg. Chem., 2011, vol. 50, no. 7, p. 2717.Google Scholar
  64. 64.
    Mironov, V.S., Dokl. Ross. Akad. Nauk, 2004, vol. 397, no. 3, p. 350.Google Scholar
  65. 65.
    Mironov, V.S., Dokl. Ross. Akad. Nauk, 2006, vol. 408, no. 3, p. 348.Google Scholar
  66. 66.
    Mironov, V.S., Dokl. Ross. Akad. Nauk, 2007, vol. 413, no. 3, p. 357.Google Scholar
  67. 67.
    Langley, S.K., Moubaraki, B., and Murray, K.S., Inorg. Chem., 2012, vol. 51, no. 7, p. 3947.Google Scholar
  68. 68.
    Bhunia, A., Gamer, M.T., Ungur, L., et al., Inorg. Chem., 2012, vol. 51, no. 18, p. 9589.Google Scholar
  69. 69.
    Hou, Y.-L., Xiong, G., Shen, B., et al., Dalton Trans., 2013, vol. 42, no. 10, p. 3587.Google Scholar
  70. 70.
    Atanasov, M., Delley, B., Neese, F., et al., Inorg. Chem., 2011, vol. 50, no. 6, p. 2112.Google Scholar
  71. 71.
    Goswami, T. and Misra, A., J. Phys. Chem. A, 2012, vol. 116, no. 21, p. 5207.Google Scholar
  72. 72.
    Gomez-Coca, S. and Ruiz, E., Dalton Trans., 2012, vol. 41, no. 9, p. 2659.Google Scholar
  73. 73.
    Novsa, J.J., Denmal, M., and Jornet-Somoza, J., Chem. Soc. Rev., 2011, vol. 40, no. 6, p. 3182.Google Scholar
  74. 74.
    Dube, M. and Stamp, P.C.E., Chem. Phys., 2001, vol. 268, nos. 1–3, p. 257.Google Scholar
  75. 75.
    Heroux, K.J., Quddusi, H.M., Liu, J., et al., Inorg. Chem., 2011, vol. 50, no. 16, p. 7367.Google Scholar
  76. 76.
    Zhang, Y.-Z., Mallik, U.P., Rath, N.P., et al., Inorg. Chem., 2011, vol. 50, no. 21, p. 10537.Google Scholar
  77. 77.
    Wu, D., Zhang, Y., Huang, W., and Sato, O., Dalton Trans., 2010, vol. 39, no. 23, p. 5500.Google Scholar
  78. 78.
    Zhang, Y.-Z., Mallik, U.P., Rath, N., et al., Chem. Commun., 2010, vol. 46, no. 27, p. 4953.Google Scholar
  79. 79.
    Zhang, Y.-Z., Mallik, U.P., Clerac, R., et al., Chem. Commun., 2011, vol. 47, no. 25, p. 7194.Google Scholar
  80. 80.
    Wang, C.-F., Gu, Z.-G., Lu, X.-M., et al., Inorg. Chem., 2008, vol. 47, no. 18, p. 7957.Google Scholar
  81. 81.
    Gu, J.-Z., Jiang, L., Tan, M.-Y., and Lu, T.-B., J. Mol. Struct., 2008, vol. 890, nos. 1–3, p. 24.Google Scholar
  82. 82.
    Jurca, T., Farghal, A., Lin, P.-H., et al., J. Am. Chem. Soc., 2011, vol. 133, no. 40, p. 15814.Google Scholar
  83. 83.
    Karasawa, S. and Koga, N., Inorg. Chem., 2011, vol. 50, no. 15, p. 5186.Google Scholar
  84. 84.
    Karasawa, S. and Koga, N., Inorg. Chem., 2011, vol. 50, no. 6, p. 2055.Google Scholar
  85. 85.
    Karasawa, S., Yoshihara, D., Watanabe, N., et al., Dalton Trans., 2008, no. 11, p. 1418.Google Scholar
  86. 86.
    Yoshihara, D., Karasawa, S., and Koga, N., J. Am. Chem. Soc., 2008, vol. 130, no. 32, p. 10460.Google Scholar
  87. 87.
    Ishii, N., Okamura, Y., Chiba, S., et al., J. Am. Chem. Soc., 2008, vol. 130, no. 1, p. 24.Google Scholar
  88. 88.
    Antunes, M.A., Pereira, L.C.J., Santos, I.C., et al., Inorg. Chem., 2011, vol. 50, no. 20, p. 9915.Google Scholar
  89. 89.
    Rinehart, J.D., Harris, T.D., Kozimor, S.A., et al., Inorg. Chem., 2009, vol. 48, no. 8, p. 3382.Google Scholar
  90. 90.
    Chadwick, F.M., Ashley, A., Wildgoose, G., et al., Dalton Trans., 2010, vol. 39, no. 29, p. 6789.Google Scholar
  91. 91.
    Schelter, E.J., Wu, R.L., Scott, B.L., et al., Inorg. Chem., 2010, vol. 49, no. 3, p. 924.Google Scholar
  92. 92.
    Kraft, S.J., Fanwick, P.E., and Bart, S.C., Inorg. Chem., 2010, vol. 49, no. 3, p. 1103.Google Scholar
  93. 93.
    Leuenberger, M.N. and Loss, D., Nature, 2001, vol. 410, no. 6830, p. 789.Google Scholar
  94. 94.
    Nguyen, T.N., Wernsdorfer, W., Abboud, K., and Christou, G., J. Am. Chem. Soc., 2011, vol. 133, no. 51, p. 20688.Google Scholar
  95. 95.
    Das, A., Gieb, K., Krupskaya, Y., et al., J. Am. Chem. Soc., 2011, vol. 133, no. 10, p. 3433.Google Scholar
  96. 96.
    Wang, Y., Li, X.-L., Wang, T.-W., et al., Inorg. Chem., 2010, vol. 49, no. 3, p. 969.Google Scholar
  97. 97.
    Lin, P.-H., Burchell, T.J., Ungur, L., et al., Angew. Chem., Int. Ed. Engl., 2009, vol. 48, no. 50, p. 9489.Google Scholar
  98. 98.
    Rinehart, J.O., Fang, M., Evans, W.J., et al., Nat. Chem., 2011, vol. 3, no. 7, p. 538.Google Scholar
  99. 99.
    Lin, S.-Y., Xu, G.-F., Zhao, L., et al., Dalton Trans., 2011, vol. 40, no. 32, p. 8213.Google Scholar
  100. 100.
    Guo, Y.-N., Xu, G.-F., Wernsdorfer, W., et al., J. Am. Chem. Soc., 2011, vol. 133, no. 31, p. 11948.Google Scholar
  101. 101.
    Del Carmen Gimenez Lopez, M., Moro, F., LaTorre, A., et al., Nat. Commun., 2011, vol. 2, art. no. 407.Google Scholar
  102. 102.
    Joachim, C., Gimzewski, J.K., and Aviram, A., Nature, 2000, vol. 408, no. 6812, p. 541.Google Scholar
  103. 103.
    Leuenberger, M.N. and Mucciolo, E.R., Phys. Rev. Lett., 2006, vol. 97, no. 12, p. 126601.Google Scholar
  104. 104.
    Mannini, M., Sainctavit, P., Sessoli, R., et al., Chem.-Eur. J., 2008, vol. 14, no. 25, p. 7530.Google Scholar
  105. 105.
    Voss, S., Fonin, M., Rudiger, U., et al., Phys. Rev. B: Condens. Matter, 2007, vol. 75, no. 4, p. 45102.Google Scholar
  106. 106.
    Mannini, M., Pineider, F., Sainctavit, P., et al., Nat. Mater., 2009, vol. 8, no. 3, p. 194.Google Scholar
  107. 107.
    Mannini, M., Pineider, F., Danieli, C., et al., Nature, 2010, vol. 468, no. 7322, p. 417.Google Scholar
  108. 108.
    Corradini, V., Moro, F., Biagi, R., et al., Phys. Rev. B, 2009, vol. 79, no. 14, p. 144419.Google Scholar
  109. 109.
    Ghirri, A., Corradini, V., Bellini, V., et al., ACS Nano, 2011, vol. 5, no. 9, p. 7090.Google Scholar
  110. 110.
    Moro, F., Corradini, V., Evangelisti, M., et al., J. Phys. Chem. B, 2008, vol. 112, no. 32, p. 9729.Google Scholar
  111. 111.
    Moro, F., Corradini, V., Evangelisti, M., et al., Nanoscale, 2010, vol. 2, no. 12, p. 2698.Google Scholar
  112. 112.
    Kahle, S., Deng, Z.T., Malinowski, N., et al., Nano Lett., 2012, vol. 12, no. 1, p. 518.Google Scholar
  113. 113.
    Saywell, A., Magnano, G., Satterley, C.J., et al., Nat. Commun., 2010, vol. 1, Art. no. 75.Google Scholar
  114. 114.
    Coronado, F., Gimener-Saiz, C., Recuenco, A., et al., Inorg. Chem., 2011, vol. 50, no. 16, p. 7370.Google Scholar
  115. 115.
    Jiang, S.-D., Liu, S.-S., Zhou, L.-N., et al., Inorg. Chem., 2012, vol. 51, no. 5, p. 3079.Google Scholar
  116. 116.
    Gonidec, M., Biagi, R., Corradini, V., et al., J. Am. Chem. Soc., 2011, vol. 133, no. 17, p. 6603.Google Scholar
  117. 117.
    Margheriti, L., Chiappe, D., Mannini, M., et al., Adv. Mater., 2010, vol. 22, no. 48, p. 5488.Google Scholar
  118. 118.
    Stepanow, S., Honolka, J., Gambardella, P., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 34, p. 11900.Google Scholar
  119. 119.
    Moro, F., Biagi, R., Corradini, V., et al., J. Phys. Chem., vol. 116, no. 28, p. 14936.Google Scholar
  120. 120.
    Mannini, M., Tancini, E., Sorace, L., et al., Inorg. Chem., 2011, vol. 50, no. 7, p. 2911.Google Scholar
  121. 121.
    Poneti, G., Mannini, M., Sorace, L., et al., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 11, p. 1954.Google Scholar
  122. 122.
    Ishikawa, N., Sugita, M., Ishikawa, T., et al., J. Phys. Chem. B, 2004, vol. 108, no. 31, p. 11265.Google Scholar
  123. 123.
    Ishikawa, N., Sugita, M., and Wernsdorfer, W., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, no. 19, p. 2931.Google Scholar
  124. 124.
    Ishikawa, N., Polyhedron, 2007, vol. 26, nos. 9–11, p. 2147.Google Scholar
  125. 125.
    Gonidec, M., Davies, E.S., McMaster, J., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 6, p. 1756.Google Scholar
  126. 126.
    Gomez-Segura, J., Diez-Perez, I., Ishikawa, N., et al., Chem. Commun., 2006, no. 27, p. 2866.Google Scholar
  127. 127.
    Rinehart, J.D., Fang, M., Evans, W.J., and Long, J.R., J. Am. Chem. Soc., 2011, vol. 133, no. 36, p. 14236.Google Scholar
  128. 128.
    Cucinotta, G., Perfetti, M., Luzon, J., et al., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, no. 7, p. 1606.Google Scholar
  129. 129.
    Boulon, M.-E., Cucinotta, G., Luzon, J., et al., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 1, p. 350.Google Scholar
  130. 130.
    Ungur, L., Henvel, W., and Chibotaru, L.F., New J. Chem., 2009, vol. 33, no. 6, p. 1224.Google Scholar
  131. 131.
    Hewitt, I.J., Tang, J., Madhu, N.T., et al., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 36, p. 6352.Google Scholar
  132. 132.
    Hewitt, I.J., Lan, Y., Anson, C.E., et al., Chem. Commun., 2009, no. 44, p. 6765.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Lukov
    • 1
  • V. A. Kogan
    • 1
  • S. I. Levchenkov
    • 2
  • I. N. Shcherbakov
    • 1
  • L. D. Popov
    • 1
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations