Russian Journal of Coordination Chemistry

, Volume 40, Issue 9, pp 599–606 | Cite as

Copper(II) and nickel(II) complexes with bis(azomethine)—a condensation product of 1-phenyl-3-methyl-4-formyl-5-mercaptopyrazole with 1,3-diaminopropan-2-ol

  • A. I. Uraev
  • L. D. Popov
  • S. I. Levchenkov
  • I. N. Shcherbakov
  • V. G. Vlasenko
  • K. Yu. Suponitskii
  • S. S. Beloborodov
  • D. A. Garnovskii
  • V. A. Kogan
Article

Abstract

The copper(II) and nickel(II) complexes based on bis(azomethine), which is the condensation product of 1-phenyl-3-methyl-4-formyl-5-mercaptopyrazole with 1,3-diaminopropan-2-ol, are synthesized. Bis-azomethines can form both binuclear and mononuclear complexes in which the hydroxy group is not involved in coordination. The binuclear copper(II) complexes with the acetate and pyrazolate bridges exhibit an antiferromagnetic exchange, which strength is determined by the nature of the bridge (2J = −154 and −424 cm−1, respectively). The structure parameters of the coordination spheres of the complexes are determined by X-ray absorption spectroscopy. The structure of the CHCl3 solvate of the binuclear copper(II) complex with the pyrazolate bridge is solved by X-ray diffraction analysis (CIF file CCDC 964655).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casellato, U., Vigato, P.A., and Vidali, M., Coord. Chem. Rev., 1977, vol. 23, no. 1, p. 31.CrossRefGoogle Scholar
  2. 2.
    Suzuki, M., Furutachi, H., and Okawa, H., Coord. Chem. Rev., 2000, vols. 200–202, no. 1, p. 105.CrossRefGoogle Scholar
  3. 3.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2004, vol. 248, nos. 17–20, p. 1717.CrossRefGoogle Scholar
  4. 4.
    Vigato, P.A., Tamburini, S., and Bertolo, L., Coord. Chem. Rev., 2007, vol. 251, nos. 11–12, p. 1311.CrossRefGoogle Scholar
  5. 5.
    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.CrossRefGoogle Scholar
  6. 6.
    Mazurek, W., Kennedy, B.J., Murray, K.S., et al., Inorg. Chem., 1985, vol. 24, no. 20, p. 3258.CrossRefGoogle Scholar
  7. 7.
    Nishida, Y. and Kida, S., Dalton Trans., 1986, no. 12, p. 2633.Google Scholar
  8. 8.
    Nishida, Y. and Kida, S., Inorg. Chem., 1988, vol. 27, no. 3, p. 447.CrossRefGoogle Scholar
  9. 9.
    Fallon, G.D., Markiewicz, A., Murray, K.S., and Quach, T., Chem. Commun., 1991, no. 3, p. 198.Google Scholar
  10. 10.
    Chou, Y.-C., Huang, S.-F., Koner, R., et al., Inorg. Chem., 2004, vol. 43, no. 9, p. 2759.CrossRefGoogle Scholar
  11. 11.
    Tupolova, Yu.P., Kogan, V.A., Lukov, V.V., et al., Transition Met. Chem., 2007, vol. 32, no. 5, p. 656.CrossRefGoogle Scholar
  12. 12.
    Lai, T.-C., Chen, W.-H., Lee, C.-J., et al., J. Mol. Struct., 2009, vol. 935, no. 1, p. 97.CrossRefGoogle Scholar
  13. 13.
    Kou, Y., Tian, J., Li, D., et al., Dalton Trans., 2009, no. 13, p. 2374.Google Scholar
  14. 14.
    Popov, L.D., Tupolova, Yu.P., Lukov, V.V., et al., Inorg. Chim. Acta, 2009, vol. 362, no. 6, p. 1673.CrossRefGoogle Scholar
  15. 15.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, p. 1.CrossRefGoogle Scholar
  16. 16.
    Kvitko, I.Ya. and Porai-Koshits, B.A., Zh. Org. Khim., 1969, vol. 5, no. 9, p. 1685.Google Scholar
  17. 17.
    SMART and SAINT. Release 5.0. Area Detector Control and Integration Software, Madison (WI, USA): Bruker AXS, 1998.Google Scholar
  18. 18.
    Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-Detector X-ray Data, Göttingen (Germany): Univ. of Göttingen, 1999.Google Scholar
  19. 19.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  20. 20.
    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectral Method for Investigation of the Structures of Amorphous Solids: EXAFS Spectroscopy), Novosibirsk: Nauka Sib. otd., 1988.Google Scholar
  21. 21.
    Newville, M., J. Synchrotron Rad., 2001, no. 8, p. 96.Google Scholar
  22. 22.
    Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev., vol. 52, p. 2995.Google Scholar
  23. 23.
    Hennig, L., Kirmse, R., Hammerich, O., et al., Inorg. Chim. Acta, 1995, vol. 234, nos. 1–2, p. 67.CrossRefGoogle Scholar
  24. 24.
    Rasmussen, J.C., Toftlund, H., Nivorzhkin, A.N., et al., Inorg. Chim. Acta, 1996, vol. 251, nos. 1–2, p. 291.CrossRefGoogle Scholar
  25. 25.
    Uraev, A.I., Vasil’chenko, I.S., Borodkin, G.S., et al., Izv. Akad. Nauk, Ser. Khim., 2005, vol. 54, no. 3, p. 623.Google Scholar
  26. 26.
    Kukushkin, Yu.N., Khodzhaev, O.F., Budanova, V.F., and Parpiev, N.A., Termoliz koordinatsionnykh soedinenii (Thermolysis of Coordination Compounds), Tashkent: Fan, 1986.Google Scholar
  27. 27.
    Kahn, O., Molecular Magnetism, New York: VCH Publishers, 1993.Google Scholar
  28. 28.
    Bleaney, B. and Bowers, K.D., Proc. R. Soc. London. A, 1952, vol. 214, no. 1119, p. 451.CrossRefGoogle Scholar
  29. 29.
    Yamamoto, T., X-ray Spectrom., 2008, vol. 37, no. 6, p. 572.CrossRefGoogle Scholar
  30. 30.
    Nagatani, H., Tanida, H., Watanabe, I., and Sagara, T., Anal. Sci., 2009, vol. 25, no. 4, p. 475.CrossRefGoogle Scholar
  31. 31.
    Chen, L.X., Shaw, G.B., Liu, T., et al., Chem. Phys., 2004, vol. 299, nos. 2–3, p. 215.CrossRefGoogle Scholar
  32. 32.
    Choy, J.-H., Yoon, J.-B., and Jung, H., J. Phys. Chem. B, 2002, vol. 106, no. 43, p. 11120.CrossRefGoogle Scholar
  33. 33.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 10, p. 689.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. I. Uraev
    • 1
  • L. D. Popov
    • 1
  • S. I. Levchenkov
    • 2
  • I. N. Shcherbakov
    • 1
  • V. G. Vlasenko
    • 1
  • K. Yu. Suponitskii
    • 3
  • S. S. Beloborodov
    • 1
  • D. A. Garnovskii
    • 2
  • V. A. Kogan
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations