Russian Journal of Coordination Chemistry

, Volume 40, Issue 8, pp 523–530 | Cite as

Influence of the bridging coordination of DMSO on the exchange interaction character in the binuclear copper(II) complex with the nonsymmetrical exchange fragment

  • S. I. Levchenkov
  • I. N. Shcherbakov
  • L. D. Popov
  • V. G. Vlasenko
  • K. Yu. Suponitskii
  • A. A. Tsaturyan
  • V. V. Lukov
  • V. A. Kogan
Article

Abstract

The binuclear copper(II) complex [Cu2L(CH3COO)] (I), where L3− is the azomethine trianion based on 3-methyl-4-formyl-1-phenylpyrazol-5-one and 1,3-diaminopropan-2-ol, and its DMSO adduct (II) in which the DMSO molecule acts as an additional bridging ligand are synthesized. The structure of complex II is determined by X-ray diffraction analysis, and the structure parameters of the coordination unit of complex I are determined by EXAFS spectroscopy. The μ2-coordination of the DMSO molecule in compound II results in a change in the sign of the exchange interaction parameter. In complex I, the antiferromagnetic exchange interaction (2J = −169 cm−1) occurs between the copper(II) ions. The exchange interaction of the ferromagnetic type (2J = 174 cm−1) is observed in complex II. The quantum-chemical calculations of the magnetic exchange parameters by the density functional theory method show that the role of the DMSO molecule as a switch of the exchange interaction character is exclusively the stabilization of the “broken” conformation of the metallocycles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casellato, U., Vigato, P.A., and Vidali, M., Coord. Chem. Rev., 1977, vol. 23, no. 1, p. 31.CrossRefGoogle Scholar
  2. 2.
    Suzuki, M., Furutachi, H., and Okawa, H., Coord. Chem. Rev., 2000, vols. 200–202, no. 1, p. 105.CrossRefGoogle Scholar
  3. 3.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2004, vol. 248, nos. 17–20, p. 1717.CrossRefGoogle Scholar
  4. 4.
    Vigato, P.A., Tamburini, S., and Bertolo, L., Coord. Chem. Rev., 2007, vol. 251, nos. 11–12, p. 1311.CrossRefGoogle Scholar
  5. 5.
    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.CrossRefGoogle Scholar
  6. 6.
    Mazurek, W., Kennedy, B.J., Murray, K.S., et al., Inorg. Chem., 1985, vol. 24, no. 20, p. 3258.CrossRefGoogle Scholar
  7. 7.
    Nishida, Y. and Kida, S., Inorg. Chem., 1988, vol. 27, no. 3, p. 447.CrossRefGoogle Scholar
  8. 8.
    Fallon, G.D., Markiewicz, A., Murray, K.S., and Quach, T., J. Chem. Soc., Chem. Commun., 1991, no. 3, p. 198.Google Scholar
  9. 9.
    Chou, Y.-C., Huang, S.-F., Koner, R., et al., Inorg. Chem., 2004, vol. 43, no. 9, p. 2759.CrossRefGoogle Scholar
  10. 10.
    Lai, T.-C., Chen, W.-H., Lee, C.-J., et al., J. Mol. Struct., 2009, vol. 935, no. 1, p. 97.CrossRefGoogle Scholar
  11. 11.
    Kou, Y., Tian, J., Li, D., et al., Dalton Trans., 2009, no. 13, p. 2374.Google Scholar
  12. 12.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, p. 1.Google Scholar
  13. 13.
    SMART and SAINT. Release 5.0. Area Detector Control and Integration Software. Bruker AXS, Madison (WI, USA): Analytical X-Ray Instruments, 1998.Google Scholar
  14. 14.
    Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-detector X-Ray Data, Göttingen (Germany): Univ. of Göttingen, 1999.Google Scholar
  15. 15.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  16. 16.
    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectral Method for Structural Study of Amorphous Solids: EXAFS Spectroscopy), Novosibirsk: Nauka. Sib. otdnie, 1988.Google Scholar
  17. 17.
    Newville, M., J. Synchrotron Rad., 2001, no. 8, p. 96.Google Scholar
  18. 18.
    Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev., B, 1995, vol. 52, p. 2995.CrossRefGoogle Scholar
  19. 19.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.Google Scholar
  20. 20.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785.CrossRefGoogle Scholar
  21. 21.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., et al., J. Coord. Chem., 2008, vol. 61, no. 3, p. 392.CrossRefGoogle Scholar
  22. 22.
    Ginsberg, A.P., J. Am. Chem. Soc., 1980, vol. 102, no. 1, p. 111.CrossRefGoogle Scholar
  23. 23.
    Noodleman, L., Peng, C.Y., Case, D.A., and Mouesca, J.-M., Coord. Chem. Rev., 1995, vol. 144, p. 119.CrossRefGoogle Scholar
  24. 24.
    Lacroix, P.G. and Daran, J.-C., J. Chem. Soc., Dalton Trans., 1997, no. 8, p. 1369.Google Scholar
  25. 25.
    Soda, T., Kitagawa, Y., Onishi, T., et al., Chem. Phys. Lett., 2000, vol. 319, nos. 3–4, p. 223.Google Scholar
  26. 26.
    Gaussian 03. Revision D.01, Wallingford (CT, USA): Gaussian, Inc., 2004.Google Scholar
  27. 27.
    Zhurko, G.A., Chemcraft 1.6 (build 338), http://www.chemcraftprog.com
  28. 28.
    Kukushkin, Yu.N., Khodzhaev, O.F., Budanova, V.F., and Parpiev, N.A., Termoliz koordinatsionnykh soedinenii (Thermolysis of Coordination Compounds), Tashkent: Fan, 1986.Google Scholar
  29. 29.
    Kawata, T., Ohba, S., Nishida, Y., and Tokii, T., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1993, vol. 49, no. 12, p. 2070.CrossRefGoogle Scholar
  30. 30.
    Nishida, Y. and Kida, S., J. Chem. Soc., Dalton Trans., 1986, no. 12, p. 2633.Google Scholar
  31. 31.
    Weng, C.-H., Cheng, S.-C., Wei, H.-M., et al., Inorg. Chim. Acta, 2006, vol. 359, no. 7, p. 2029.CrossRefGoogle Scholar
  32. 32.
    Nishida, Y., Takeuchi, M., Takahashi, K., and Kida, S., Chem. Lett., 1985, vol. 14, no. 5, p. 631.CrossRefGoogle Scholar
  33. 33.
    Kogan, V.A., Lukov, V.V., Novotortsev, V.M., et al., Izv. Ross. Akad. Nauk, Ser. Khim., 2005, vol. 54, no. 3, p. 592.Google Scholar
  34. 34.
    Elmali, A., Zeyrek, C.T., and Elerman, Y., J. Mol. Struct., 2004, vol. 693, nos. 1–3, p. 225.CrossRefGoogle Scholar
  35. 35.
    Tupolova, Yu.P., Popov, L.D., Levchenkov, S.I, et al., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 552.CrossRefGoogle Scholar
  36. 36.
    Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Yu.P., et al., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 28, p. 5033.Google Scholar
  37. 37.
    Lee, C.-J., Cheng, S.-C., Lin, H.-H., and Wei, H.H., Inorg. Chem. Commun., 2005, vol. 8, no. 3, p. 235.Google Scholar
  38. 38.
    Dhara, K., Roy, P., Ratha, J., et al., Polyhedron, 2007, vol. 26, no. 15, p. 4509.CrossRefGoogle Scholar
  39. 39.
    Chen, C.-Y., Lu, J.-W., and Wei, H.-H., J. Chin. Chem. Soc, 2009, vol. 56, no. 1, p. 89.Google Scholar
  40. 40.
    Yamamoto, T., X-ray Spectrom., 2008, vol. 37, no. 6, p. 572.CrossRefGoogle Scholar
  41. 41.
    Nagatani, H., Tanida, H., Watanabe, I., and Sagara, T., Anal. Sci., 2009, vol. 25, no. 4, p. 475.CrossRefGoogle Scholar
  42. 42.
    Chen, L.X., Shaw, G.B., Liu, T., et al., Chem. Phys., 2004, vol. 299, nos. 2–3, p. 215.Google Scholar
  43. 43.
    Choy, J.-H., Yoon, J.-B., and Jung, H., J. Phys. Chem. B, 2002, vol. 106, no. 43, p. 11120.Google Scholar
  44. 44.
    Bleaney, B. and Bowers, K.D., Proc. R. Soc. London. A, 1952, vol. 214, no. 1119, p. 451.CrossRefGoogle Scholar
  45. 45.
    Kahn, O., Molecular Magnetism, New York: VCH, 1993.Google Scholar
  46. 46.
    Queralt, N., De Graaf, C., Cabrero, J., and Caballol, R., Mol. Phys., 2003, vol. 101, no. 13. p. 2095.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. I. Levchenkov
    • 1
  • I. N. Shcherbakov
    • 2
  • L. D. Popov
    • 2
  • V. G. Vlasenko
    • 2
  • K. Yu. Suponitskii
    • 3
  • A. A. Tsaturyan
    • 2
  • V. V. Lukov
    • 2
  • V. A. Kogan
    • 2
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations