Russian Journal of Coordination Chemistry

, Volume 40, Issue 2, pp 69–76 | Cite as

Tetranuclear copper(II) complex with the heterocyclic azomethine ligand: Crystal structure and magnetic properties

  • S. I. Levchenkov
  • I. N. Shcherbakov
  • L. D. Popov
  • K. Yu. Suponitskii
  • A. A. Tsaturyan
  • S. S. Beloborodov
  • V. A. Kogan
Article

Abstract

A tetranuclear copper(II) complex based on azomethine, which is the condensation product of 1-phenyl-3-methyl-4-formylpyrazol-5-one with 1,3-diaminopropan-2-ol, is synthesized. The complex includes two different tetranuclear clusters: symmetrical and unsymmetrical. They have a pseudo-cubane structure and are in a ratio of 1 : 2. The quantum-chemical calculation shows that the “unsymmetrical” conformer does not correspond to the local minimum on the molecular potential energy surface. Its existence is thus determined by the crystalline packing effects. According to the results of measurements of the temperature dependence of the magnetic susceptibility, the ground spin state is a singlet caused by the overall antiferromagnetic interaction between the copper ions. Accepting the molar magnetic susceptibility of the complex to be equal to the sum of susceptibilities of the “symmetrical” and “unsymmetrical” clusters and assuming that the spin-Hamiltonian for both clusters includes three exchange parameters, the temperature dependence of the magnetic susceptibility of the complex is satisfactorily described with the following parameters of the model: J1A = −178, J2A = 80, J3A = 18, J1B = −26, J2B = −74, J3B = 46 cm−1, gA = gB = 2.05.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2004, vol. 248, nos. 17–20, p. 1717.CrossRefGoogle Scholar
  2. 2.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2008, vol. 252, nos. 18–20, p. 1871.CrossRefGoogle Scholar
  3. 3.
    Popov, L.D., Morozov, A.N., Shcherbakov, I.N., et al., Usp. Khim., 2009, vol. 78, no. 7, p. 697.CrossRefGoogle Scholar
  4. 4.
    Alexeev, Yu.E., Kharisov, B.I., Hernandez Garcia, T.C., and Garnovskii, A.D., Coord. Chem. Rev., 2010, vol. 254, nos. 7–8, p. 794.CrossRefGoogle Scholar
  5. 5.
    Garnovskii, A.D., Burlov, A.S., Vasil’chenko, I.S., et al., Russ. J. Coord. Chem., 2010, vol. 36, no. 2, p. 81.CrossRefGoogle Scholar
  6. 6.
    Vigato, P.A., Peruzzo, V., and Tamburini, S., Coord. Chem. Rev., 2012, vol. 256, nos. 11–12, p. 953.CrossRefGoogle Scholar
  7. 7.
    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.CrossRefGoogle Scholar
  8. 8.
    Mazurek, W., Berry, K.J., O’Connor, M.J., et al., Inorg. Chem., 1982, vol. 21, no, 8, p. 3071.CrossRefGoogle Scholar
  9. 9.
    Nishida, Y. and Kida, S., Dalton Trans., 1986, no. 12, p. 2633.Google Scholar
  10. 10.
    Popov, L.D., Tupolova, Yu.P., Lukov, V.V., et al., Inorg. Chim. Acta, 2009, vol. 362, no. 6, p. 1673.CrossRefGoogle Scholar
  11. 11.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, no. 1, pp. 1–4.CrossRefGoogle Scholar
  12. 12.
    APEX2 and SAINT, Madison (WI, USA): Bruker AXS Inc., 2005.Google Scholar
  13. 13.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  14. 14.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  15. 15.
    Gaussian 03. Revision D.01, Wallingford (CT, USA): Gaussian, Inc., 2004.Google Scholar
  16. 16.
    Song, Y., Roubeau, O., Gamez, P., et al., Inorg. Chem., 2004, vol. 43, no. 21, p. 6842.CrossRefGoogle Scholar
  17. 17.
    Tandon, S.S., Thompson, L.K., Manuel, M.E., and Bridson, J.N., Inorg. Chem., 1994, vol. 33, no. 24, p. 5555.CrossRefGoogle Scholar
  18. 18.
    Thompson, L.K., Tandon, S.S., and Manuel, M.E., Inorg. Chem., 1995, vol. 34, no. 9, p. 2356.CrossRefGoogle Scholar
  19. 19.
    Onofrio, N. and Mouesca, J.-M., J. Phys. Chem. A, 2010, vol. 114, no. 20, p. 6149.CrossRefGoogle Scholar
  20. 20.
    Basak, S., Sen, S., Rosair, G., et al., Aust. J. Chem., 2009, vol. 62, no. 4, p. 366.CrossRefGoogle Scholar
  21. 21.
    Adhikarya, C. and Koner, S., Coord. Chem. Rev., 2010, vol. 254, nos. 23–34, p. 2933.CrossRefGoogle Scholar
  22. 22.
    Jotham, R.W. and Kettle, S.F.A., Inorg. Chim. Acta, 1970, vol. 4, no. 2, p. 145.CrossRefGoogle Scholar
  23. 23.
    Kahn, O., Molecular Magnetism, VCH, 1993.Google Scholar
  24. 24.
    Zhang, X.-M., Wang, Y.-Q., and Gao, E.-Q., Eur. J. Inorg. Chem., 2010, vol. 2010, no. 8, p. 1249.CrossRefGoogle Scholar
  25. 25.
    Monfared, H.H., Sanchiz, J., Kalantari, Z., and Janiak, C., Inorg. Chim. Acta, 2009, vol. 362, no. 10, p. 3791.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. I. Levchenkov
    • 1
  • I. N. Shcherbakov
    • 2
  • L. D. Popov
    • 2
  • K. Yu. Suponitskii
    • 3
  • A. A. Tsaturyan
    • 2
  • S. S. Beloborodov
    • 2
  • V. A. Kogan
    • 2
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations