Russian Journal of Coordination Chemistry

, Volume 39, Issue 2, pp 214–218 | Cite as

Coordination polymer of uranyl nitrate with 4,4,10,10-Tetramethyl-1,3,7,9-Tetraazaspiro[5.5]undecane-2,8-dione (Spirocarbone, Sk): Synthesis and study of molecular and crystal structures

Article

Abstract

The coordination polymer {[UO2(NO3)2(C11H20N4O2)] · 2H2O}n (I) was obtained and examined by X-ray diffraction. The crystals are monoclinic, space group C2/c; a = 23.1386(13), b = 5.41575(15), c = 19.7769(11) Å, β = 125.285(8)°, V = 2023.01(17) Å3, ρcalcd = 2.20 g/cm3, Z = 4. The U atom occupies a special position in the center of inversion. Its coordination polyhedron is a distorted hexagonal bipyramid with axial oxo ligands. In the equatorial plane, the U(1) atom is coordinated by four O atoms of two bidentate nitrate anions and two O atoms of two carbonyl groups of organic spirocarbone (Sk) molecules, which are related by the symmetry operation (0.5 − x, 0.5 − y, −z). In the crystal, polymer chains are parallel to the direction (101). Water molecules are hydrogen-bonded to the N(1) atom of ligand Sk; in addition, they are linked together by the intermolecular hydrogen bonds O(6)-H(6d)…O(6)i(i1/2 − x, −1/2 + y, 1/2 − z); H…O 2.11 Å angle O-H…O 160°) and to the nitrate anions by the hydrogen bonds O(6)-H(6e)…O(3)i; H…O 2.29 Å; the angle O-H…O 149°). In the crystal, hydrogen-bonded water molecules form chains along the axis y that are perpendicular to the coordination polymers. To verify the purity of complex I, the Rietveld refinement of its X-ray powder diffraction pattern was performed. At room temperature, the unit cell parameters are a = 23.2965(6), b = 5.51225(15), c = 19.8588(6) Å, β = 125.6063(17)°, V = 2073.40(10) Å3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tribrat, T.P. and Eres’ko, V.A., Vseukr. Nauch.-Prakt. Konf. (All-Ukraininan Scientific and Pract. Conf.), 1994, p. 101.Google Scholar
  2. 2.
    Starikovich, L.S., Starikovich, M.A., Rechitskii, A.N., et al., Studia Biologica, 2009, vol. 3, no. 2, p. 93.Google Scholar
  3. 3.
    Starikovich, L.S., Dudok, E.P., Sibirnaya, N.A., et al., Medichna Khimiya, 2009, vol. 11, no. 1, p. 57.Google Scholar
  4. 4.
    Musatov, A.G., Semyashkina, A.A., and Dashevskii, R.F., Khranenie i Pererabotka Zerna, 2003, p. 16.Google Scholar
  5. 5.
    Gurevich, A.S., Titov, V.A., Babaeva, E.V., et al., Introduktsiya, Akklimatizatsiya i Kul’tivatsiya Rastenii: Sb. Nauch. Trud., 1998, p. 30.Google Scholar
  6. 6.
    Kozichar, M.V., Extended Abstract of Candidate Sci. (Biol.) Dissetation, Kherson: Kherson National Technical Univ., 1999.Google Scholar
  7. 7.
    Netreba, E.E., Fedorenko, A.M., and Pavlov, A.A., Nauk. Visnik Uzhgorod. Un-tu, Ser. Khim., 2011, no. 1 (25), p. 107.Google Scholar
  8. 8.
    Sheldrick, G., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.CrossRefGoogle Scholar
  9. 9.
    Rodriguez-Carvajal, J. and Roisnel, T., FullProf.98 and WinPLOTR: New Windows 95/NT Applications for Diffraction. Commission for Powder Diffraction, International Union of Crystallography, 1998, no 20.Google Scholar
  10. 10.
    Grigor’ev, A.I., Vvedenie v kolebatel’nuyu spektroskopiyu neorganicheskikh soedinenii (Introduction to Vibrational Spectroscopy of Inorganic Compounds), Moscow: MGU, 1977.Google Scholar
  11. 11.
    Nakanishi, K., Infrared Absorption Spectroscopy, Practical, San-Francisco: Holden-Day, 1962.Google Scholar
  12. 12.
    Burgi, H.B. and Dunitz, J.D., Structure Correlation, Weinheim: VCH, 1994. vol. 2, P. 741.CrossRefGoogle Scholar
  13. 13.
    Zefirov, Yu.V. and Zorkii, P.M., Usp. Khim., 1989, vol. 58, no. 5, p. 713.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Vernadsky Taurida National UniversitySimferopolUkraine

Personalised recommendations