Advertisement

Russian Journal of Coordination Chemistry

, Volume 38, Issue 3, pp 207–218 | Cite as

Low-melting salts with the [CrIII(NCS)4(1,10-phenanthroline)] complex anion: Syntheses, properties, and structures

Article

Abstract

Four new low melting salts, “Ionic Liquids” consisting of the [CrIII(NCS)4(Phen)] complex monoanion and imidazolium based cations A, with A = 1-ethyl-3-methylimidazolium (EMIm), 1-butyl-3-methylimidazolium (BMIm), 1,3-dimethyl-2,4,5-triphenylimidazolium (DML), and 1,2,3,4,5-pentamethyl-imidazolium (PMIm), were investigated. Single-crystal X-ray investigations established the structures of the four compounds. (EMIm)[Cr(NCS)4(Phen)] (I): triclinic, \(P\bar 1\), a = 8.1382(6), b = 10.4760(8), c = 16.003(1) Å, α = 90.330(4)°, β = 94.759(4)°, γ = 107.305(4)°, Z = 2, R 1(F)/wR 2(F 2) = 0.0650/0.1770; (BMIm)[Cr(NCS)4(Phen)] (II): triclinic, \(P\bar 1\), a = 8.5545(4), b = 9.8620(4), c = 16.6762(6) Å, α = 92.503(2)°, β = 97.517(2)°, γ = 91.249(2)°, Z = 2, R 1(F)/wR 2(F 2) = 0.0393/0.0848; (DML)[Cr(NCS)4(Phen)] · C3H6O (III): triclinic, \(P\bar 1\), a = 11.0475(9), b = 13.589(1), c = 14.582(1) Å, α = 83.013(4)°, β = 87.116(4)°, γ = 70.333(5)°, Z = 2, R 1(F)/wR 2(F 2) = 0.0407/0.1023; (PMIm)[Cr(NCS)4(Phen)] · C3H6O (IV): orthorhombic, Pbca, a = 17.379(1), b = 16.514(1), c = 22.304(1) Å, Z = 8, R 1(F)/wR 2(F 2) = 0.0460/0.1107 (in addition III and IV contain co-crystallized acetone molecules). Each compound was characterized by elemental analysis, NMR, IR, und UV-Vis spectroscopy. Magnetic properties were derived from NMR investigations (EVANS method). All four compounds are paramagnetic with effective magnetic moments of spin-only CrIII. Melting points were obtained from DSC measurements. All melting points are higher than required for “Ionic Liquids”, but nevertheless “low” for molten salts.

Keywords

Ionic Liquid Imidazolium Phen Coordination Chemistry Bipy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welton, T., Chem. Rev., 1999, vol. 99, p. 2071.CrossRefGoogle Scholar
  2. 2.
    Wasserscheid, P. and Keim, W., Angew. Chem., 2000, vol. 112, p. 3926.CrossRefGoogle Scholar
  3. 3.
    Seddon, K.R.J., J. Chem. Tech. Biotech., 1997, vol. 68, p. 351.CrossRefGoogle Scholar
  4. 4.
    Bonhôte, P., Dias, A.P., Papageorgiou, N., et al., Inorg. Chem., 1996, vol. 35, p. 1168.CrossRefGoogle Scholar
  5. 5.
    Weingärtner, H., Angew. Chem., 2008, vol. 120, p. 664.CrossRefGoogle Scholar
  6. 6.
    Buzzero, M.C., Evans, R.G., and Compton, R.G., Chem. Phys. Chem., 2004, vol. 5, p. 1106.CrossRefGoogle Scholar
  7. 7.
    Marsh, K.N., Boxal, J.A., and Lichtenthaler, R., Fluid Phase Equilib., 2004, vol. 219, p. 93.CrossRefGoogle Scholar
  8. 8.
    Endres, F. and Abedin, S.Z.E., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 2101.CrossRefGoogle Scholar
  9. 9.
    Hayashi, S. and Hamaguchi, H., Chem. Lett., 2004, vol. 33, p. 1590.CrossRefGoogle Scholar
  10. 10.
    Hayashi, S., Saha, S., and Hamaguchi, H., IEEE Trans. Magn., 2006, vol. 42, p. 12.CrossRefGoogle Scholar
  11. 11.
    Zhang, Q.-G., Yang, J.-Z., Lu, X.-M., et al., Fluid Phase Equilibria, 2004, vol. 226, p. 207.CrossRefGoogle Scholar
  12. 12.
    Zhong, C., Sasaki, T., Jimbo-Kobayashi, A., et al., Bull. Chem. Soc. Jpn., 2007, vol. 80, p. 2365.CrossRefGoogle Scholar
  13. 13.
    Kozlova, S.A., Verevkin, S.P., Heintz, A., et al., J. Chem. Eng. Data, 2009, vol. 54, p. 1524.CrossRefGoogle Scholar
  14. 14.
    Peppel, T. and Köckerling, M., Z. Anorg. Allg. Chem., 2010, vol. 636, p. 2439.CrossRefGoogle Scholar
  15. 15.
    Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., et al., Angew. Chem., 2010, vol. 122, p. 7270.CrossRefGoogle Scholar
  16. 16.
    Yoshida, Y. and Saito, G., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 1675.CrossRefGoogle Scholar
  17. 17.
    Mallick, B., Balke, B., Felser, C., and Mudring, A.-V., Angew. Chem., 2008, vol. 120, p. 7747.CrossRefGoogle Scholar
  18. 18.
    Del Sesto, R.E., McCleskey, T.M., Burrell, A.K., et al., Chem. Commun., 2008, p. 447.Google Scholar
  19. 19.
    Branco, A., Branco, L.C., and Pina, F., Chem. Commun., 2011, vol. 47, p. 2300.CrossRefGoogle Scholar
  20. 20.
    Krieger, B.M., Lee, H.Y., Emge, T.J., and Wishart, J.F., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 8919.CrossRefGoogle Scholar
  21. 21.
    Bäcker, T., Breunig, O., Valldor, M., et al., Cryst. Growth Des., 2011, vol. 11, p. 2564.CrossRefGoogle Scholar
  22. 22.
    Morland, J., J. Chem. Soc., 1861, vol. 13, p. 252.Google Scholar
  23. 23.
    Reinecke, A., J. Liebigs Ann. Chem., 1863, vol. 126, p. 113.Google Scholar
  24. 24.
    Christensen, O.T., J. prakt. Chem., 1892, vol. 45, p. 213.CrossRefGoogle Scholar
  25. 25.
    Nordenskjöld, O., Z. Anorg. Chem., 1892, vol. 1, p. 126.CrossRefGoogle Scholar
  26. 26.
    Werner, A., Z. Anorg. Chem., 1897, vol. 15, p. 243.CrossRefGoogle Scholar
  27. 27.
    Wegner, E.E. and Adamson, A.W., J. Am. Chem. Soc., 1966, vol. 88, p. 394.CrossRefGoogle Scholar
  28. 28.
    Concepts of Inorganic Photochemistry, Adamson, A.W., Fleischhauer, P. D., Eds., New York: Wiley, 1975.Google Scholar
  29. 29.
    Balzani, V. and Carassiti, V., Photochemistry of Coordination Compounds, London: Academic Press, 1970.Google Scholar
  30. 30.
    Mainusch, B., Wasgestian, F., Stasicka, Z., and Karocki, A., J. Inf. Rec. Mats., 1994, vol. 21, p. 687.Google Scholar
  31. 31.
    Mainusch, B., Karocki, A., Guldi, D.M., et al., Inorg. Chim. Acta, 1997, vol. 255, p. 87.CrossRefGoogle Scholar
  32. 32.
    Gănescu, I. and Preda, M., Pharmazie, 1990, vol. 45, p. 438.Google Scholar
  33. 33.
    Bratulescu, G., Ganescu, I., and Braz, S., J. Chem. Soc., 2007, vol. 15, p. 49.Google Scholar
  34. 34.
    Al-Ghannam, S.M., Spectrochim. Acta, A, 2008, vol. 69, p. 1188.CrossRefGoogle Scholar
  35. 35.
    Uivarosi, V. and Monciu, C.M., Rev. Chim., 2009, vol. 60, p. 132.Google Scholar
  36. 36.
    Peppel, T., Schmidt, C., and Köckerling, M., Z. Anorg. Allg. Chem., 2011, vol. 637, p. 1314.CrossRefGoogle Scholar
  37. 37.
    Namboodiri, V.V. and Varma, R.S., Org. Lett., 2002, vol. 4, p. 3161.CrossRefGoogle Scholar
  38. 38.
    Paulechka, Y.U., Kabo, G.J., Blokhin, A.V., et al., J. Chem. Thermodyn., 2007, vol. 39, p. 158.CrossRefGoogle Scholar
  39. 39.
    Roth, C., Peppel, T., Fumino, K., et al., Angew. Chem., 2010, vol. 122, p. 10419.CrossRefGoogle Scholar
  40. 40.
    Roesler, J., Liebigs Ann. Chem., 1867, vol. 141, p. 185.Google Scholar
  41. 41.
    Bennett, M.A., Clark, R.J.H., and Goodwin, A.D.J., Inorg. Chem., 1967, vol. 6, p. 1625.CrossRefGoogle Scholar
  42. 42.
    Evans, D.F., J. Chem. Soc., 1959, p. 2003.Google Scholar
  43. 43.
    Sur, S.K., J. Magnet. Res., 1989, vol. 82, p. 169.Google Scholar
  44. 44.
    Pacault, A., Hoarau, J., and Marchand, A., Adv. Chem. Phys., 1960, vol. 3, p. 171.CrossRefGoogle Scholar
  45. 45.
    Haberditzl, W., Angew. Chem., 1966, vol. 78, p. 277.CrossRefGoogle Scholar
  46. 46.
    Langevin, P., J. Phys., 1905, vol. 4, p. 678.Google Scholar
  47. 47.
    Langevin, P., Ann. Chim. Phys., 1905, vol. 5, p. 70.Google Scholar
  48. 48.
    Apex-2 (version 1.6-8), Sain (version 6.25a), SADABS-Software for the CCD Detector System, Madison (WI, USA): Bruker-Nonius Inc., 2003.Google Scholar
  49. 49.
    Sheldrick, G.M., Acta Crystallogr., A, 2008, vol. 64, p. 112.CrossRefGoogle Scholar
  50. 50.
    Turner, S.S., Le Pevelen, D., Day, P., and Prout, K., Dalton Trans., 2000, p. 2739.Google Scholar
  51. 51.
    Le Pevelen, D., Turner, S.S., Day, P., and Prout, K., Synth. Metals, 2001, vol. 121, p. 1842.CrossRefGoogle Scholar
  52. 52.
    Setifi, F., Ouahab, L., Golhen, S., et al., Inorg. Chem., 2002, vol. 41, p. 3761.CrossRefGoogle Scholar
  53. 53.
    Setifi, F., Ouahab, L., Miyazaki, A., et al., Synth. Metals, 2003, vol. 137, p. 1177.CrossRefGoogle Scholar
  54. 54.
    Mori, T. and Katsuhara, M., J. Phys. Soc. Jpn, 2003, vol. 72, p. 149.CrossRefGoogle Scholar
  55. 55.
    Umemiya, M., Goto, M., Kobayashi, N., et al., Chem. Lett., 2006, vol. 35, p. 368.CrossRefGoogle Scholar
  56. 56.
    Tait, S. and Osteryoung, R.A., Inorg. Chem., 1984, vol. 23, p. 4352.CrossRefGoogle Scholar
  57. 57.
    Hitchcock, P.B., Seddon, K.R., and Welton, T., Dalton Trans. 1993, p. 2639.Google Scholar
  58. 58.
    Katsyuba, S.A., Dyson, P.J., Vandyukova, E.E., et al., Helv. Chim. Acta, 2004, vol. 87, p. 2556.CrossRefGoogle Scholar
  59. 59.
    Wulf, A., Fumino, K., and Ludwig, R., J. Phys. Chem., A, 2010, vol. 114, p. 685.CrossRefGoogle Scholar
  60. 60.
    Ganescu, I., Varhelyi, C., and Oprescu, D., Rev. Chim. Minŭrale, 1969, vol. 6, p. 765.Google Scholar
  61. 61.
    Calu, N., Brinzan, G., and Bilba, N., Rev. Roum. Chim., 1986, vol. 31, p. 1047.Google Scholar
  62. 62.
    Pandey, Y., Mathur, P.K., and Kapoor, S.N., J. Indian Chem. Soc., 1985, vol. 62, p. 153.Google Scholar
  63. 63.
    Wegener, E.E. and Adamson, A.W., J. Am. Chem. Soc., 1966, vol. 88, p. 394.CrossRefGoogle Scholar
  64. 64.
    Bennett, M.A., Clark, R.J.H., and Goodwin, A.D.J., Inorg. Chem., 1967, vol. 6, p. 1625.CrossRefGoogle Scholar
  65. 65.
    Lodzinska, A. and Szczepanski, S., Rocz. Chem., 1972, vol. 46, p. 1473.Google Scholar
  66. 66.
    Cioica, M., Ganescu, I., and Lepadatu, C.I., Z. Phys. Chem., 1975, vol. 97, p. 41.CrossRefGoogle Scholar
  67. 67.
    Olarte, B., Krentzien, H., and Bifano, C., Acta Cient. Venezolana, 1980, vol. 31, p. 404.Google Scholar
  68. 68.
    Srivastava, R.K. and Srivastava, T.N., Current Sci., 1984, vol. 53, p. 313.Google Scholar
  69. 69.
    Fumino, K., Peppel, T., Geppert-Rybczynńska, M., et al., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 14064.CrossRefGoogle Scholar
  70. 70.
    Shukla, P.R., Chandra, S., Misra, S., and Narain, G., J. Indian Chem. Soc., 1984, vol. 61, p. 827.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Inorganic Solid State ChemistryUniversity of RostockRostockGermany
  2. 2.Leibniz Institute for CatalysisRostockGermany

Personalised recommendations