Skip to main content

Microwave synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony(III) and bismuth(III) compounds with benzothiazoline

Abstract

The reaction of 2-hydroxy-N-phenylbenzamide with 2-aminobenzenethiol yielded 2-hydroxy-N-phenylbenzamidebenzothiazoline (H2-Saly · BTZ/HO⋂N⋂SH). The reaction of H2-Saly · BTZ with PhSbCl2, SbCl3, and BiCl3 under varied reaction conditions (microwave, as well as conventional method) gave corresponding antimony( III) and bismuth(III) Schiff base compounds (substitution along with addition) in different coordination environments. These complexes were characterized by elemental analysis, IR and NMR (1H and 13C) spectral studies. The ligand was found to bifunctional tridentate, as well as monodentate for different starting materials of metal (Sb/Bi), as well as for different reaction conditions, hence, suitable coordination environments and pseudotrigonal bipyramidal geometry for the antimony and bismuth complexes have been proposed. Their biological activities have also been checked against many fungi and bacteria. The complexes were found to be more toxic than the corresponding ligand. The article is published in the original.

This is a preview of subscription content, access via your institution.

References

  1. Kidwai, M. Pure Appl. Chem., 2001, vol. 73, p. 147.

    Article  CAS  Google Scholar 

  2. Agrawal, M., Tandon, J.P., and Mehrotra, R.C., Inorg. Nucl. Chem., 1981, vol. 43, p. 1070.

    Article  CAS  Google Scholar 

  3. Chauhan, H.P.S., Srivastava, G., and Mehrotra, R.C., Indian J. Chem., 1984, vol. 23, p. 436.

    Google Scholar 

  4. Fahmi, N. and Singh, R.V., Transition Met. Chem., 1994, vol. 19, p. 453.

    CAS  Google Scholar 

  5. Kanoongo, N., Singh, R.V., Tandon, J.P., and Goyal, R.B., J. Inorg. Biochem., 1990, vol. 38, p. 57.

    Article  CAS  Google Scholar 

  6. Pandey, T. and Singh, R.V. Main, Group Met. Chem., 2000, vol. 23, p. 346.

    Google Scholar 

  7. Klapotke, T., Biol. Met., 1988, vol. 1, p. 69.

    Article  CAS  Google Scholar 

  8. Smith, K.A., Deacon, G.B., Jackson, W.R., et al., Metal Based Drugs, 1998, vol. 5, p. 295.

    Article  CAS  Google Scholar 

  9. Comprehensive Coordination Chemistry, Wilkinson, G., Ed., Oxford (UK): Pergamon, 1987.

    Google Scholar 

  10. Haiduc, I. and Silvestru, C., Organometallics in Cancer Therapy, Boca Raton, FL: CRC, 1989, vol. 3.

    Google Scholar 

  11. Khosa, M.K., Mazhar, M., Ali, S., et al., Turk. J. Chem., 2006, vol. 30, p. 345.

    CAS  Google Scholar 

  12. Handbook on Metals in Clinical and Analytical Chemistry, Iffland, R., Seiler, H.G., Sigel, A., and Sigel, H., Eds., New York: Marcel Dekker, 1994.

    Google Scholar 

  13. Nunn, M., Sowerby, D.B., and Wesolek, D.M., J. Organometal. Chem., 1983, vol. 45, p. 251.

    Google Scholar 

  14. Mahajan, K., Fahmi, N., and Singh, R.V., Indian J. Chem., A, 2007, vol. 46, p. 1221.

    Google Scholar 

  15. Vogel, A.I., A Text Book of Quantitative Inorganic Analysis, London: Longmans, 1989.

    Google Scholar 

  16. Comprehensive Analytical Chemistry, B, Wilson, C.L. and Wilson, D.W., Eds., New York: Elsevier, 1960, vol. 1.

    Google Scholar 

  17. Garg, R., Fahmi, N., and Singh, R.V., Russ. J. Coord. Chem., 2008, vol. 34, p. 203.

    Google Scholar 

  18. Singh, R.V., Mittal, S.P., Swami, M., and Mahajan, K., Int. J. Chem. Sci., 2007, vol. 5, p. 1417.

    CAS  Google Scholar 

  19. Chremos, G.N. and Zingaro, R.A., J. Organomet. Chem., 1970, vol. 2, p. 647.

    Article  Google Scholar 

  20. Brill, T.B. and Campbell, N.C., Inorg. Chem., 1973, vol. l2, p. 1884.

    Article  Google Scholar 

  21. Sharma, R.K., Singh, Y.P., and Rai, A.K., Synth. React. Inorg. Met.-Org. Chem., 2001, vol. 31, p. 405.

    Article  CAS  Google Scholar 

  22. Agoes, L., Burford, N., Cameron, T.S., et al., J. Am. Chem. Soc., 1996, vol. 118, p. 3225.

    Article  Google Scholar 

  23. Briand, G.G., Burford, N., Cameron, T.S., and Kwaitkoswki, W., J. Am. Chem. Soc., 1998, vol. 120, p. 177.

    Article  Google Scholar 

  24. Sharma, M.K., Sharma, M., Singh, A., and Mehrotra, R.C., Indian J. Chem., A, 2001, vol. 40, p. 1226.

    Google Scholar 

  25. Chauhan, H.P.S., Shrivastava, G., and Mehrotra, R.C., Indian J. Chem., A, 1984, vol. 23, p. 434.

    Google Scholar 

  26. Gaur, S., Maanju, S., Fahmi, N., and Singh, R.V., Main Group Met. Chem., 2005, vol. 28, p. 293.

    CAS  Google Scholar 

  27. Louie, A.Y. and Meade, T.J., Chem. Rev., 1999, vol. 99, p. 2711.

    Article  CAS  Google Scholar 

  28. Tweedy, B.G., Phytopathology, 1964, vol. 55, p. 910.

    Google Scholar 

  29. Garg, R., Saini, M.K., Fahmi, N., and Singh, R.V., Transition Met. Chem., 2006, vol. 31, p. 362.

    Article  CAS  Google Scholar 

  30. Lawrence, P.G., Harold, P.L., and Francis, O.G., Antibiotic and Chemotherapy, 1980, vol. 5, p. 1597.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Singh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahajan, K., Swami, M. & Singh, R.V. Microwave synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony(III) and bismuth(III) compounds with benzothiazoline. Russ J Coord Chem 35, 179–185 (2009). https://doi.org/10.1134/S1070328409030038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328409030038

Keywords

  • Bismuth
  • Antimony
  • Coordination Chemistry
  • Alternaria Alternata
  • Microwave Synthesis