Skip to main content
Log in

Iron stereochemistry in oxygen-containing compounds

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The Voronoi-Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to analyze the coordination of 1598 sorts of Fe atoms in the structure of 985 oxygen-containing compounds. The iron atoms whose oxidation number varies from 1 to 6 can coordinate 2 to 8 oxygen atoms in the crystal structure, giving rise to the FeOn coordination polyhedra shaped like square antiprisms (n = 8), octahedra or trigonal prisms (n = 6), square pyramids or trigonal bipyramids (n = 5), tetrahedra or squares (n = 4), triangles (n = 3), or dumbbells (n = 2). The effect of the valence state and the coordination number of iron on the VDP parameters was studied. A general linear correlation between the solid angles of the VDP faces corresponding to Fe-O bonds and the corresponding interatomic distances, which vary over a broad range (1.63–2.77 Å), was established. It is shown in relation to the A2Fe2O5 oxides (A = Ca, Sr) that VDP characteristics make it possible to reveal essential differences in the crystal structures even for isostructural compounds. The FeIVO6 octahedra, unlike isoelectronic MnIIIO6 or CrIIO6 octahedra, display no Jahn-Teller effect. In was shown in relation to CaFeO3 that VDP parameters can be used for the quantitative description of the charge disproportionation in the crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shishkina, O.V., Serezhkina, L.B., Serezhkin, V.N., et al., Zh. Neorg. Khim., 2001, vol. 46, no. 9, p. 1503 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 46, no. 9, p. 1359].

    CAS  Google Scholar 

  2. Serezhkin, V.N., Serezhkina, L.B., Pushkin, D.V., and Vologzhanina, A.V., Koord. Khim., 2005, vol. 31, no. 10, p. 775.

    Google Scholar 

  3. Inorganic Crystal Structure Database, Karlsruhe: Gmelin-institut fur anorganische Chemie FIC, 2003.

  4. Cambridge Structural Database System. Version 5.25, Cambridge: Crystallographic Data Centre, 2003.

  5. Blatov, V.A., Shevchenko, A.P., and Serezhkin, V.N., Koord. Khim., 1999, vol. 25, no. 7, p. 483.

    Google Scholar 

  6. Serezhkin, V.N., Mikhailov, Yu.N., and Buslaev, Yu.A., Zh. Neorg. Khim., 1997, vol. 42, no. 12, p. 2036 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 42, no. 12, p. 1871].

    CAS  Google Scholar 

  7. Blatov, V.A. and Serezhkin, V.N., Russ. J. Inorg. Chem., 2000, vol. 45,Suppl. 2, p. 105.

    Google Scholar 

  8. Blatov, V.A. and Serezhkin, V.N., Koord. Khim., 1997, vol. 23, no. 3, p. 192.

    Google Scholar 

  9. Porai-Koshits, M.A. and Serezhkin, V.N., Zh. Neorg. Khim., 1994, vol. 39, no. 7, p. 1109.

    CAS  Google Scholar 

  10. Cameron, M., Sueno, S., Prewitt, C.T., et al., Am. Mineral., 1973, vol. 58, nos. 7–8, p. 594.

    CAS  Google Scholar 

  11. Zhang, L., Ahsbahs, H., Hafner, S.S., et al., Am. Mineral., 1997, vol. 82, nos. 3–4, p. 245.

    Google Scholar 

  12. Serezhkin, V.N., Serezhkina, L.B., and Sidorina, N.E., Koord. Khim., 2000, vol. 26, no. 7, p. 534.

    Google Scholar 

  13. Nakahara, Y., Kato, S., Sugai, M., et al., Mater. Lett., 1997, vol. 30, nos. 2–3, p. 163.

    CAS  Google Scholar 

  14. Berastegui, P., Eriksson, S.-G., and Hull, S., Mater. Research, 1999, vol. 34, no. 2, p. 303.

    CAS  Google Scholar 

  15. Sovremennaya kristallografiya (Modern Crystallography), Vainshtein, B.K., Fridkin, V.M., and Indenbom, V.L., Eds., Moscow: Nauka, 1979, vol. 2.

    Google Scholar 

  16. Harder, M. and Mueller-Buschbaum, H., Z. Anorg. Allg. Chem., 1980, vol. 464, no. 5, p. 169.

    CAS  Google Scholar 

  17. Schmidt, M. and Campbell, S.J., J. Solid State Chem., 1999, vol. 156, no. 2, p. 292.

    Google Scholar 

  18. Serezhkin, V.N. and Buslaev, Yu.A., Zh. Neorg. Khim., 1997, vol. 42, no. 7, p. 1180 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 42, no. 7, p. 1064].

    CAS  Google Scholar 

  19. Pushkin, D.V., Marukhnov, A.V., and Serezhkin, V.N., Zh. Neorg. Khim., 2004, vol. 49, no. 8, p. 1302 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 49, no. 8, p. 1197].

    CAS  Google Scholar 

  20. Serezhkin, V.N. and Serezhkina, L.B., Koord. Khim., 2002, vol. 28, no. 3, p. 212.

    Google Scholar 

  21. Serezhkina, L.B. and Serezhkin, V.N., Koord. Khim., 2002, vol. 28, no. 8, p. 563.

    Google Scholar 

  22. Takeda, T., Kanno, R., Kawamoto, Y., et al., Solid State Sci., 2000, vol. 2, no. 7, p. 673.

    Article  CAS  Google Scholar 

  23. Elemans, J.B.A.A., Van Laar, B., Van Der Veen, K.R., and Loopstra, B.O., J. Solid State Chem., 1971, vol. 3, no. 2, p. 238.

    Article  CAS  Google Scholar 

  24. Woodward, P.M., Cox, D.E., Moshopoulou, E., et al., Phys. Rev. B: Condens. Matter, 2000, vol. 62, no. 2, p. 844.

    CAS  Google Scholar 

  25. Whangbo, M.-H., Koo, H.-J., Villesuzanne, A., and Pouchard, M., Inorg. Chem., 2002, vol. 41, no. 7, p. 1920.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.N. Serezhkin, L.B. Serezhkina, D.V. Pushkin, 2006, published in Koordinatsionnaya Khimiya, 2006, Vol. 32, No. 3, pp. 188–200.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serezhkin, V.N., Serezhkina, L.B. & Pushkin, D.V. Iron stereochemistry in oxygen-containing compounds. Russ J Coord Chem 32, 180–191 (2006). https://doi.org/10.1134/S1070328406030043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328406030043

Keywords

Navigation