Skip to main content
Log in

Quantifying Structural Deformation History in the Central Indian Ocean

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The central Indian Ocean displays one of the most perplexing intra-plate deformations in an oceanic realm. Despite several studies attempting to explore this intriguing phenomenon, understanding about its structural style and spatiotemporal genesis is still debated. Earlier geophysical and deep-sea drilling studies proposed the late Miocene onset of extensive crustal deformation. Subsequent geophysical studies, however, speculated that parts of the deformation may have begun significantly earlier (c.a. 15.4–13.9 Ma) consequent upon contemporaneous dynamics of the India-Eurasia convergence. Alternative hypotheses argue about the crucial role played by temporal variations in the rotational motion of the India-Somalia-Capricorn plates. Here we examine new deep penetrating multi-channel seismic reflection data from the central Indian Ocean region to gather the style and extent of structural deformation in this region. We explore plausible mechanisms and estimate the onset of extensive intra-plate deformation. Based on seismic-stratigraphic interpretation and cumulative fault-throw analyses of new regional seismic profiles, our study confirms that extensive faulting occurred during the early Miocene period across the CIDZ. We document that an average of 40% of faults were activated around or before early Miocene time, showing maximum throw at a regional unconformity dating to 17–18 Ma. We also identify distinct categories of deformation manifested in these faults. While our findings endorse significantly prior to the late Miocene time of onset of deformation, new subsurface images offer much-improved constraints on prominent stratigraphic and structural variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Altenbernd, T., Jokat, W., and Geissler, W., The bent prolongation of the 85° E Ridge south of 5° N—Fact or fiction?, Tectonophysics, 2020, vol. 785, p. 228457. https://doi.org/10.1016/j.tecto.2020.228457

    Article  Google Scholar 

  2. Amano, K. and Taira, A., Two-phase uplift of Higher Himalayas since 17 Ma, Geology, 1992, vol. 20, no. 5, pp. 391–394. https://doi.org/10.1130/0091-7613(1992)020%3C0391:TPUOHH%3E2.3.CO;2

    Article  Google Scholar 

  3. Andrade, V. and Rajendran, K., The April 2012 Indian Ocean earthquakes: Seismotectonic context and implications for their mechanisms, Tectonophysics, 2014, vol. 617, pp. 126–139. https://doi.org/10.1016/j.tecto.2014.01.024

    Article  Google Scholar 

  4. Baudon, C. and Cartwright, J., The kinematics of reactivation of normal faults using high resolution throw mapping, J. Struct. Geol., 2008, vol. 30, no. 8, pp. 1072–1084. https://doi.org/10.1016/j.jsg.2008.04.008

    Article  Google Scholar 

  5. Bergman, E.A. and Solomon, S.C., Earthquake source mechanisms from body-waveform inversion and intraplate tectonics in the northern Indian Ocean, Phys. Earth Planet. Inter., 1985, vol. 40, no. 1, pp. 1–23. https://doi.org/10.1016/0031-9201(85)90002-0

    Article  Google Scholar 

  6. Brown, A.R., Interpretation of Three-Dimensional Seismic Data, Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2011. https://doi.org/10.1190/1.9781560802884.fm

    Book  Google Scholar 

  7. Bull, J.M., Structural style of intra-plate deformation, Central Indian Ocean Basin: Evidence for the role of fracture zones, Tectonophysics, 1990, vol. 184, no. 2, pp. 213–228. https://doi.org/10.1016/0040-1951(90)90054-C

    Article  Google Scholar 

  8. Bull, J.M. and Scrutton, R.A., Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance, J. Geol. Soc., 1992, vol. 149, no. 6, pp. 955–966. https://doi.org/10.1144/gsjgs.149.6.0955

    Article  Google Scholar 

  9. Bull, J.M., Demets, C., Krishna, K.S., Sanderson, D.J., and Merkouriev, S., Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean, Geology, 2010, vol. 38, no. 4. https://doi.org/10.1130/G30521.1

  10. Chamot-Rooke, N., Jestin, F., and Voogd, B.D., Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile, Geology, 1993, vol. 21, no. 11, pp. 1043–1046. https://doi.org/10.1130/0091-7613(1993)021%3C1043:ISITCI%3E2.3.CO;2

    Article  Google Scholar 

  11. Chiu, J.M., Johnston, A.C., and Yang, Y.T., Imaging the active faults of the central New Madrid seismic zone using PANDA array data, Seismological Res. Lett., 1992, vol. 63, no. 3, pp. 375–393. https://doi.org/10.1785/gssrl.63.3.375

    Article  Google Scholar 

  12. Cochran, J.R., Himalayan uplift, sea level, and the record of Bengal Fan sedimentation at the ODP Leg 116 sites, Proc. Ocean Drilling Program. Sci. Results, 1990, vol. 116, pp. 397–414.

    Google Scholar 

  13. Curray, J.R. and Moore, D.G., Growth of the Bengal deep-sea fan and denudation in the Himalayas, Bull. Geol. Soc. Am., 1971, vol. 82, no. 3, pp. 563–572. https://doi.org/10.1130/0016-7606(1971)82[563:GOTBDF]2.0.CO;2

    Article  Google Scholar 

  14. Curray, J.R. and Moore, D.G., Sedimentary and tectonic processes in the Bengal Deep-Sea Fan and Geosyncline, The Geology of Continental Margins, Burk, C.A. and Drake, C.L., Eds., Berlin: Springer, 1974, pp. 617–627. https://doi.org/10.1007/978-3-662-01141-6_45

    Book  Google Scholar 

  15. Curray, J.R., Emmel, F.J., Moore, D.G., and Raitt, R.W., Structure, tectonics, and geological history of the Northeastern Indian Ocean, The Ocean Basins and Margins, Nairn, A.E.M. and Stehli, F.G., Eds., Boston: Springer, 1982, pp. 399–450. https://doi.org/10.1007/978-1-4615-8038-6_9

    Book  Google Scholar 

  16. Delescluse, M. and Chamot-Rooke, N., Instantaneous deformation and kinematics of the India-Australia Plate, Geophys. J. Int., 2007, vol. 168, no. 2, pp. 818–842. https://doi.org/10.1111/j.1365-246X.2006.03181.x

    Article  Google Scholar 

  17. Delescluse, M., Montési, L.G.J., and Chamot-Rooke, N., Fault reactivation and selective abandonment in the oceanic lithosphere, Geophys. Res. Lett., 2008, vol. 35, no. 16, pp. 1–5. https://doi.org/10.1029/2008GL035066

    Article  Google Scholar 

  18. DeMets, C. and Merkouriev, S., Detailed reconstructions of India-Somalia Plate motion, 60 Ma to present: Implications for Somalia Plate absolute motion and India-Eurasia Plate motion, Geophys. J. Int., 2021, vol. 227, no. 3, pp. 1730–1767. https://doi.org/10.1093/gji/ggab295

    Article  Google Scholar 

  19. DeMets, C. and Royer, J.Y., A new high-resolution model for India-Capricorn motion since 20 Ma: Implications for the chronology and magnitude of distributed crustal deformation in the Central Indian Basin, Curr. Sci., 2003, vol. 85, no. 3, pp. 339–345.

    Google Scholar 

  20. DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., Current plate motions, Geophys. J. Int., 1990, vol. 101, no. 2, pp. 425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x

    Article  Google Scholar 

  21. DeMets, C., Gordon, R.G., and Argus, D.F., Geologically current plate motions, Geophys. J. Int., 2010, vol. 181, no. 1, pp. 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

    Article  Google Scholar 

  22. DeMets, C., Merkouriev, S., and Jade, S., High-resolution reconstructions and GPS estimates of India–Eurasia and India–Somalia plate motions: 20 Ma to the present, Geophys. J. Int., 2020, vol. 220, no. 2, pp. 1149–1171. https://doi.org/10.1093/gji/ggz508

    Article  Google Scholar 

  23. Deplus, C., Diament, M., Hébert, H., Bertrand, G., Dominguez, S., Dubois, J., Malod, J., Patriat, Ph., Pontoise, B., and Sibilla, J.-J., Geology: Direct evidence of active deformation in the eastern Indian oceanic plate, Geology, 1998, vol. 26, no. 2, pp. 131–134. https://doi.org/10.1130/0091-7613(1998)026%3C0131:DEOADI%3E2.3.CO;2

    Article  Google Scholar 

  24. Desa, M.A. and Ramana, M.V., Middle Cretaceous geomagnetic field anomalies in the Eastern Indian Ocean and their implication to the tectonic evolution of the Bay of Bengal, Mar. Geol., 2016, vol. 382, pp. 111–121. https://doi.org/10.1016/j.margeo.2016.10.002

    Article  Google Scholar 

  25. Desa, M.A. and Ramana, M.V., Integrated analysis of magnetic, gravity and multichannel seismic reflection data along a transect southeast of Sri Lanka, Bay of Bengal: New constraints, Mar. Geol., 2021, vol. 438, p. 106543. https://doi.org/10.1016/j.margeo.2021.106543

    Article  Google Scholar 

  26. Eittreim, S.L. and Ewing, J., Mid-plate tectonics in the Indian Ocean, J. Geophys. Res., 1972, vol. 77, no. 32, pp. 6413–6421. https://doi.org/10.1029/jb077i032p06413

    Article  Google Scholar 

  27. Fowler, C.M.R. and Fowler, M., The Solid Earth: An Introduction to Global Geophysics, Cambridge University Press, 1990.

    Google Scholar 

  28. Fowler, C.M.R., The Solid Earth: An Introduction to Global Geophysics, New York: Cambridge University Press, 2005, vol. 685.

    Google Scholar 

  29. Gaina, C., Müller, R.D., Brown, B., Ishihara, T., and Ivanov, S., Breakup and early seafloor spreading between India and Antarctica, Geophys. J. Int., 2007, vol. 170, no. 1, pp. 151–169. https://doi.org/10.1111/j.1365-246X.2007.03450.x

    Article  Google Scholar 

  30. Geersen, J., Bull, J.M., McNeill, L.C., Henstock, T.J., Gaedicke, C., Chamot-Rooke, N., and Delescluse, M., Pervasive deformation of an oceanic plate and relationship to large >M\w 8 intraplate earthquakes: The northern Wharton Basin, Indian Ocean, Geology, 2015, vol. 43, no. 4, pp. 359–362. https://doi.org/10.1130/G36446.1

    Article  Google Scholar 

  31. Gordon, R.G., Lithospheric deformation in the equatorial Indian Ocean: Timing and Tibet, Geology, 2009, vol. 37, no. 3, pp. 287–288. https://doi.org/10.1130/focus032009.1

    Article  Google Scholar 

  32. Gordon, R.G. and Houseman, G.A., Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 6, pp. 4434–4449. https://doi.org/10.1002/2015JB011993

    Article  Google Scholar 

  33. Gordon, R.G., DeMets, C., and Argus, D.F., Kinematic constraints on distributed lithospheric deformation in the equatorial Indian Ocean from present motion between the Australian and Indian plates, Tectonics, 1990, vol. 9, no. 3, pp. 409–422. https://doi.org/10.1029/TC009i003p00409

    Article  Google Scholar 

  34. Gordon, R.G., DeMets, C., and Royer, J.-Y., Evidence for long-term diffuse deformation of the lithosphere of the equatorial Indian Ocean, Nature, 1998, vol. 395, no. 6700, pp. 370–374. https://doi.org/10.1038/26463

    Article  Google Scholar 

  35. Iaffaldano, G., Davies, D.R., and DeMets, C., Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau, Nat. Geosci., 2018, vol. 11, no. 5, pp. 362–366. https://doi.org/10.1038/s41561-018-0110-z

    Article  Google Scholar 

  36. Jiracek, G.R., Gonzalez, V.M., Grant Caldwell, T., Wannamaker, P.E., and Kilb, D., Seismogenic, Electrically Conductive, and Fluid Zones at Continental Plate Boundaries in New Zealand, Himalaya, and California, USA, A Continental Plate Boundary: Tectonics at South Island, New Zealand, Okaya, D., Stern, T., and Davey, F., Eds., Geophysical Monograph Series, vol. 175, Am. Geophys. Union, 2013, pp. 347–369. https://doi.org/10.1029/175GM18

  37. Kothyari, G.C., Kandregula, R.S., Dumka, R., Chauhan, G., and Taloor, A.K., Quaternary tectonic history of seismically active intraplate Kachchh Rift Basin, western India: A review, Geodesy Geodyn., 2022, vol. 13, no. 3, pp. 192–204. https://doi.org/10.1016/j.geog.2021.09.011

    Article  Google Scholar 

  38. Krishna, K.S., Bull, J.M., and Scrutton, R.A., Evidence for multiphase folding of the central Indian Ocean lithosphere, Geology, 2002, vol. 29, no. 8, pp. 715–718. https://doi.org/10.1130/0091-7613(2001)029<0715:EFMFOT>2.0.CO;2

    Article  Google Scholar 

  39. Krishna, K.S., Ramana, M.V., Gopala Rao, D., Murthy, K.S.R., Malleswara Rao, M.M., Subrahmanyam, V., and Sarma, K.V.L.N.S., Periodic deformation of oceanic crust in the central Indian Ocean, J. Geophys. Res.: Solid Earth, 1998, vol. 103, no. 8, pp. 17859–17875. https://doi.org/10.1029/98jb00078

    Article  Google Scholar 

  40. Krishna, K.S., Bull, J.M., and Scrutton, R.A., Early (pre-8 Ma) fault activity and temporal strain accumulation in the central India Ocean, Geology, 2009, vol. 37, no. 3, pp. 227–230. https://doi.org/10.1130/G25265A.1

    Article  Google Scholar 

  41. Kumar, P., Yuan, X., Kumar, M.R., Kind, R., Li, X., and Chadha, R.K., The rapid drift of the Indian tectonic plate, Nature, 2007, vol. 449, no. 7164, pp. 894–897. https://doi.org/10.1038/nature06214

    Article  Google Scholar 

  42. Laurencin, M., Singh, S.C., Hananto, N., Carton, H.D., Bradley, K.E., Sarkar, S., and Tapponnier, P., Discovery of a thick sedimentary basin along nascent plate boundary (re-activated fracture zones) in the Wharton Basin, AGU Fall Meeting Abstracts, Am. Geophys. Union, 2019, pp. 43E–0475.

  43. Levchenko, O.V. and Veklich, I.A., Mosaic of deformed tectonic blocks in the central basin of the Indian Ocean, Dokl. Earth Sci., 2022, vol. 505, no. 1, pp. 465–470. https://doi.org/10.1134/S1028334X22070121

    Article  Google Scholar 

  44. Mueller, K. and Pujol, J., Three-dimensional geometry of the Reelfoot blind thrust: Implications for moment release and earthquake magnitude in the New Madrid seismic zone, Bull. Seismological Soc. Am., 2001, vol. 91, no. 6, pp. 1563–1573. https://doi.org/10.1785/0120000276

    Article  Google Scholar 

  45. Muraoka, H. and Kamata, H., Displacement distribution along minor fault traces, J. Struct. Geol., 1983, vol. 5, no. 5, pp. 483–495. https://doi.org/10.1016/0191-8141(83)90054-8

    Article  Google Scholar 

  46. Nagar, M., Pavankumar, G., Mahesh, P., Rakesh, N., and Kumar, A., Tectonophysics Magnetotelluric evidence for trapped fluids beneath the seismogenic zone of the Mw6.0 Anjar earthquake, Kachchh intraplate region, Northwest India, Tectonophysics, 2021, vol. 814, p. 228969. https://doi.org/10.1016/j.tecto.2021.228969

    Book  Google Scholar 

  47. Neprochnov, Y.P., Levchenko, O.V., Merklin, L.R., and Sedov, V.V., The structure and tectonics of the intraplate deformation area in the Indian Ocean, Tectonophysics, 1988a, vol. 156, nos. 1–2, pp. 89–106. https://doi.org/10.1016/0040-1951(88)90285-5

    Article  Google Scholar 

  48. Neprochnov, Yu.P., Gopala Rao, D., Murthy, K.S.R., and Subrahmanyam, C., Subrahmanyam Intraplate Deformation in the Central Indian Ocean Basin, Geological Society of India, 1998b.

    Google Scholar 

  49. Ningthoujam, L.S., Pandey, D.K., Nair, N., Yadav, R., Khogenkumar, S., Negi, S.S., and Kumar, A., Plume-ridge interactions in the Central Indian Ocean Basin: Insights from new wide-angle seismic and potential field modelling, Tectonophysics, 2022, vol. 824, p. 229222. https://doi.org/10.1016/j.tecto.2022.229222

    Article  Google Scholar 

  50. Norton, I.O. and Sclater, J.G., A model for the evolution of the Indian Ocean and the breakup of Gondwanaland, J. Geophys. Res.: Solid Earth, 1979, vol. 84, no. 12, pp. 6803–6830. https://doi.org/10.1029/jb084ib12p06803

    Article  Google Scholar 

  51. Osagiede, E.E., Duffy, O.B., Jackson, C.A.-L., and Wrona, T., Quantifying the growth history of seismically imaged normal faults, J. Struct. Geol., 2014, vol. 66, pp. 382–399. https://doi.org/10.1016/j.jsg.2014.05.021

    Article  Google Scholar 

  52. Pandey, D.K., Pandey, A., and Whattam, S.A., Relict subduction initiation along a passive margin in the northwest Indian Ocean, Nat. Commun., 2019, vol. 10, no. 1, p. 2248. https://doi.org/10.1038/s41467-019-10227-8

    Article  Google Scholar 

  53. Pandey, D.K., Pandey, A., Clift, P.D., Nair, N., Ramesh, P., Kulhanek, D.K., and Yadav, R., Flexural subsidence analysis of the Laxmi Basin, Arabian Sea and its tectonic implications, Geol. Mag., 2020, vol. 157, no. 6, pp. 834–847. https://doi.org/10.1017/S0016756818000833

    Article  Google Scholar 

  54. Pandey, D.K., Ningthoujam, L.S., Yadav, R., Nair, N., Negi, S., Kumar, A., and Khogenkumar, S., Seismic investigations around an aseismic Comorin ridge, Indian Ocean, J. Geol. Soc., 2022, vol. 179, no. 6. https://doi.org/10.1144/jgs2021-113

  55. Pavan Kumar, G., Mahesh, P., Nagar, M., Mahender, E., Kumar, V., Mohan, K., and Ravi Kumar, M., Role of deep crustal fluids in the genesis of intraplate earthquakes in the Kachchh region, northwestern India, Geophys. Res. Lett., 2017, vol. 44, no. 9, pp. 4054–4063. https://doi.org/10.1002/2017GL072936

    Article  Google Scholar 

  56. Petroy, D.E. and Wiens, D.A., Historical seismicity and implications for diffuse plate convergence in the northeast Indian Ocean, J. Geophys. Res.: Solid Earth, 1989, vol. 94, no. B9, pp. 12301–12319. https://doi.org/10.1029/jb094ib09p12301

    Article  Google Scholar 

  57. Rajendran, K., Rajendran, C.P., Thakkar, M., and Tuttle, M.P., The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance, Curr. Sci., 2001, vol. 80, no. 11, pp. 1397–1405.

    Google Scholar 

  58. Rao, D.G., Krishna, K.S., and Sar, D., Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous, J. Geophys. Res.: Solid Earth, 1997, vol. 102, no. 8, pp. 17747–17768. https://doi.org/10.1029/96JB01339

    Article  Google Scholar 

  59. Royer, J.Y. and Gordon, R.G., The motion and boundary between the Capricorn and Australian plates, Science, 1997, vol. 277, no. 5330, pp. 1268–1274. https://doi.org/10.1126/science.277.5330.1268

    Article  Google Scholar 

  60. Sager, W.W., Bull, J.M., and Krishna, K.S., Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate, J. Geophys. Res.: Solid Earth, 2013, vol. 118, no. 8, pp. 4648–4668. https://doi.org/10.1002/jgrb.50319

    Article  Google Scholar 

  61. Shipboard Scientific Party. Site 718: Bengal Fan, Proc. Ocean Drilling Program, Initial Rep., 1989, vol. 116, pp. 91–154.

    Google Scholar 

  62. Smith, S.A.F., Tesei, T., Scott, J.M., and Collettini, C., Reactivation of normal faults as high-angle reverse faults due to low frictional strength: Experimental data from the Moonlight Fault Zone, New Zealand, J. Struct. Geol., 2017, vol. 105, pp. 34–43. https://doi.org/10.1016/j.jsg.2017.10.009

    Article  Google Scholar 

  63. Stein, S. and Okal, E.A., Seismicity and tectonics of the Ninetyeast Ridge area: Evidence for internal deformation of the Indian plate, J. Geophys. Res.: Solid Earth, 1978, vol. 83, no. B5, pp. 2233–2245. https://doi.org/10.1029/JB083iB05p02233

    Article  Google Scholar 

  64. Stevens, D.E., McNeill, L.C., Henstock, T.J., Delescluse, M., Chamot-Rooke, N., and Bull, J.M., A complete structural model and kinematic history for distributed deformation in the Wharton Basin, Earth Planet. Sci. Lett., 2020, vol. 538, p. 116218. https://doi.org/10.1016/j.epsl.2020.116218

    Article  Google Scholar 

  65. Stover, C.W., Seismicity of the Indian Ocean, J. Geophys. Res., 1966, vol. 71, no. 10, pp. 2575–2581. https://doi.org/10.1029/JZ071i010p02575

    Article  Google Scholar 

  66. Sykes, L.R., Seismicity of the Indian Ocean and a possible nascent island arc between Ceylon and Australia, J. Geophys. Res., 1970, vol. 75, no. 26, pp. 5041–5055. https://doi.org/10.1029/JB075i026p05041

    Article  Google Scholar 

  67. Turner, J.P. and Williams, G.A., Sedimentary basin inversion and intra-plate shortening, Earth-Sci. Rev., 2004, vol. 65, nos. 3–4, pp. 277–304. https://doi.org/10.1016/j.earscirev.2003.10.002

    Article  Google Scholar 

  68. Van Orman, J., Cochran, J.R., Weissel, J.K., and Jestin, F., Distribution of shortening between the Indian and Australian plates in the central Indian Ocean, Earth Planet. Sci. Lett., 1995, vol. 133, nos. 1–2, pp. 35–46. https://doi.org/10.1016/0012-821X(95)00061-G

    Article  Google Scholar 

  69. Vauchez, A., Tommasi, A., and Barruol, G., Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere, Tectonophysics, 1998, vol. 296, nos. 1–2, pp. 61–86. https://doi.org/10.1016/S0040-1951(98)00137-1

    Article  Google Scholar 

  70. Wang, K., He, J., and Davis, E.E., Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate, J. Geophys. Res.: Solid Earth, 1997, vol. 102, no. B1, pp. 661–674. https://doi.org/10.1029/96jb03114

    Article  Google Scholar 

  71. Weissel, J.K., Anderson, R.N., and Geller, C.A., Deformation of the Indo-Australian plate, Nature, 1980, vol. 287, no. 5780, pp. 284–291. https://doi.org/10.1038/287284a0

    Article  Google Scholar 

  72. Wiens, D.A., DeMets, C., Gordon, R.G., Stein, S., Argus, D., Engeln, J.F., Lundgren, P., Quible, D., Stein, C., Weinstein, S., and Woods, D.F., A diffuse plate boundary model for Indian Ocean tectonics, Geophys. Res. Lett., 1985, vol. 12, no. 7, pp. 429–432. https://doi.org/10.1029/GL012i007p00429

    Article  Google Scholar 

  73. Wiens, D.A., Stein, S., Demets, C., Gordon, R.G., and Stein, C., Plate tectonic models for Indian Ocean “intraplate” deformation, Tectonophysics, 1986, vol. 132, nos. 1–3, pp. 37–48. https://doi.org/10.1016/0040-1951(86)90023-5

    Article  Google Scholar 

  74. Yatheesh, V., Dyment, J., Bhattacharya, G.C., Royer, J.Y., Kamesh Raju, K.A., Ramprasad, T., Chaubey, A.K., Patriat, P., Srinivas, K., and Choi, Y., Detailed structure and plate reconstructions of the central Indian Ocean between 83.0 and 42.5 Ma (chrons 34 and 20), J. Geophys. Res.: Solid Earth, 2019, vol. 124, no. 5, pp. 4305–4322. https://doi.org/10.1029/2018JB016812

    Article  Google Scholar 

  75. Wernicke, B. and Burchfiel, B.C., Modes of extensional tectonics, J. Struct. Geol., 1982, vol. 4, no. 2, pp. 105–115. https://doi.org/10.1016/0191-8141(82)90021-9

    Article  Google Scholar 

Download references

Funding

The scientific findings presented here are supported by a research grant from the Ministry of Earth Science (MoES), Government of India, vide reference number MoES/P.O. (Seismo)8(11)-Geoid/2012. We would like to thank to Director, National Centre for Polar and Ocean Research (NCPOR), Goa for permission to publish this research. Authors extend sincere thanks to the shipboard science party onboard R/V Geo Hindsagar towards the seismic data acquisition. RY acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the Financial support under the Junior Research Fellowship (Grant no.: 09/907(0011)/2019-EMR-I). This is NCPOR contribution no. J-10/ 2023-24.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Yadav, Dhananjai K. Pandey, Lachit Singh Ningthoujam or Sanjay Singh Negi.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Modifications have been made to the Affiliations. Full information regarding the corrections made can be found in the erratum/correction for this article.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Pandey, D.K., Ningthoujam, L.S. et al. Quantifying Structural Deformation History in the Central Indian Ocean. Izv., Phys. Solid Earth 59, 1094–1112 (2023). https://doi.org/10.1134/S106935132306023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935132306023X

Navigation