Skip to main content
Log in

Joint Three-Dimensional Interpretation of AMTS and RMT-C Tensor Data in a Region Prospective for Discovery of Primary Diamond Sources (Karelian Isthmus)

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The paper presents the techniques and results of the joint interpretation of AMTS and RMT-C tensor data in the area of the Karelian Isthmus near the village of Yablonovka, promising for the discovery of primary diamond sources. Earlier, according to drilling data, fluid-cataclastic breccias, fluidolites, were identified here, which, according to modern geological concepts, can be primary diamond sources. The area is located in the marginal part of the Pasha-Ladoga rift zone and is characterized by a complex three-dimensional structure. Under these conditions, in the presence of a system of multidirectional faults, the joint interpretation of the AMTS and RMT-C tensor data was performed within a 3D model of the medium. To reduce the inversion execution time, an approach and a procedure for transforming the RMT-C data obtained in the intermediate-field zone of a controlled source to sounding curves corresponding to the plane-wave model are proposed. The transformed RMT-C apparent resistivity curves were also used to correct the static displacements of the AMTS curves. A joint 3D inversion was performed taking into account the relief. The resulting model is in good agreement with the geological data obtained from the wells previously drilled near the study area. The geoelectric sections show zones of relatively increased resistivity, which may be associated with fluidolites. The developed approaches to the joint 3D interpretation of AMTS and RMT-C tensor data and the obtained information about the structure and properties of the basement rocks, fluidolite-hosting rocks, and overlying sedimentary deposits, can be used in prospecting works for diamonds on the Karelian Isthmus and adjacent territories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Afanasov, M.N., Otchet o provedenii rabot po geologicheskomu doizucheniyu ploshchadi Karel’skogo peresheika (Report on Execution of Works on Geological Studying the Area of Karelian Isthmus), Territorial’nye Fondy Geologicheskoi Informatsii po Severo-Zapadnomu Federal’nomu Okrugu Rossiiskoi Federatsii, 2002.

  2. Afanasov, M.N., Flyuidolity i poleznye iskopaemye na severo-zapade Rossii: poiskovo-prognoznye issledovaniya na osnove detal’nogo geologo-mineralogicheskogo analiza (Fluidolithes and Mineral Resources in the North-West of Russia: Surveying and Forecasting Studies on the Basis of Detail Geological and Mineralogical Analysis), Afanasov, M.N., Kazak, A.P., and Yakobson, K.E., Eds., Saarbrücken: LAP Lambert, 2012, vol. 98.

    Google Scholar 

  3. Afanasov, M.N. and Nikolaev, V.A., Perspectives of diamond content of the Karelian Isthmus, Reg. Geol. Met., 2003, no. 18, pp. 116–121.

  4. Bastani, M., Hübert, J., Kalscheuer, T., Pedersen, L.B., Godio, A., and Bernard, J., 2D joint inversion of RMT and ERT data versus individual 3D inversion of full tensor RMT data: An example from Trecate site in Italy, Geophysics, 2012, vol. 77, no. 4, pp. WB233–WB243. https://doi.org/10.1190/geo2011-0525.1

    Article  Google Scholar 

  5. Berdichevskii, M.N. and Dmitriev, V.I., Modeli i metody magnitotelluriki (Models and Methods of Magnetotelluric Studies), Moscow: Nauchnyi Mir, 2009.

  6. Berdichevsky, M.N. and Kuznetsov, V.A., Method of pseudotopography: A new approach to analysis of magnetovariational and magnetotelluric data, Izv., Phys. Solid Earth, 2006, vol. 42, no. 8, pp. 690–701. https://doi.org/10.1134/S1069351306080064

    Article  Google Scholar 

  7. Caldwell, T.G., Bibby, H.M., and Brown, C., The magnetotelluric phase tensor, Geophys. J. Int., 2004, vol. 158, no. 2, pp. 457–469. https://doi.org/10.1111/j.1365-246x.2004.02281.x

    Article  Google Scholar 

  8. Egbert, G.D. and Booker, J.R., Robust estimation of geomagnetic transfer functions, Geophys. J. Int., 1986, vol. 87, no. 1, pp. 173–194. https://doi.org/10.1111/j.1365-246x.1986.tb04552.x

    Article  Google Scholar 

  9. Garcia, X. and Jones, A.G., Atmospheric sources for audio-magnetotelluric (AMT) sounding, Geophysics, 2002, vol. 67, no. 2, pp. 448–458. https://doi.org/10.1190/1.1468604

    Article  Google Scholar 

  10. Grayver, A.V., Streich, R., and Ritter, O., Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver, Geophys. J. Int., 2013, vol. 193, no. 3, pp. 1432–1446. https://doi.org/10.1093/gji/ggt055

    Article  Google Scholar 

  11. Kelbert, A., Meqbel, N., Egbert, G.D., and Tandon, K., ModEM: A modular system for inversion of electromagnetic geophysical data, Comput. Geosci.s, 2014, vol. 66, pp. 40–53. https://doi.org/10.1016/j.cageo.2014.01.010

    Article  Google Scholar 

  12. Khar’kiv, A.D., Zinchuk, A.N., and Kryuchkov, A.I., Korennye mestorozhdeniya almazov mira (Primary Diamond Deposits Worldwide), Moscow: Nedra, 1998.

  13. Martí, A., Queralt, P., and Ledo, J., WALDIM: A code for the dimensionality analysis of magnetotelluric data using the rotational invariants of the magnetotelluric tensor, Comput. Geosci., 2009, vol. 35, no. 12, pp. 2295–2303. https://doi.org/10.1016/j.cageo.2009.03.004

    Article  Google Scholar 

  14. Moskovskaya, L.F., Impedance-admittance regression analysis of magnetotelluric fields, Izv., Phys. Solid Earth, 2007, vol. 43, no. 2, pp. 148–160. https://doi.org/10.1134/S106935130702005X

    Article  Google Scholar 

  15. Newman, G.A., Recher, S., Tezkan, B., and Neubauer, F., 3D inversion of a scalar radio magnetotelluric field data set, Geophysics, 2003, vol. 68, no. 3, pp. 791–802. https://doi.org/10.1190/1.1581032

    Article  Google Scholar 

  16. Pace, F., Martí, A., Queralt, P., Santilano, A., Manzella, A., Ledo, J., and Godio, A., Three-dimensional magnetotelluric characterization of the Travale geothermal field (Italy), Remote Sensing, 2022, vol. 14, no. 3, p. 542. https://doi.org/10.3390/rs14030542

    Article  Google Scholar 

  17. Rodi, W.L. and Mackie, R., Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics, 2001, vol. 66, no. 1, pp. 174–187. https://doi.org/10.1190/1.1444893

    Article  Google Scholar 

  18. Roy, K.K., Natural Electromagnetic Fields in Pure and Applied Geophysics, Springer Geophysics, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-38097-7

  19. Saraev, A.K., Antaschuk, K.M., Nikiforov, A.B., Romanova, N.E., and Denisov, R.V., Chin. J. Geophys., 2010, vol. 53, no. 3, pp. 657–676. https://doi.org/10.3969/j.issn.0001-5733.2010.03.021

    Article  Google Scholar 

  20. Saraev, A.K., Antashchuk, K.M., Pertel’, M.I., Eremin, I.S., Golovenko, V.B., and Larionov, K.A., Hardware-software complex of audiomagnetotelluric soundings AKF-4M, Materialy Pyatoi vserossiiskoi shkoly-seminara imeni M.N. Berdichevskogo i L.L. Van’yana po elektromagnitnym zondirovaniyam Zemli. EMZ-2011 (Proc. 5th All-Russian School-Workshop Dedicated to M.N. Berdichevsky and L.L. Vanyan on Electromagnetic Soundings of the Earth. EMZ-2011), St. Petersburg: S.-Peterb. Gos. Univ., vol. 2, pp. 475–478.

    Google Scholar 

  21. Saraev, A.K., Simakov, A.E., and Shlykov, A.A., Radiomagnetotelluric soundings method with a controlled source, Geofizika, 2014, no. 1, pp. 18–25.

  22. Saraev, A.K., Shlykov, A.A., and Tezkan, B., Application of the controlled source radiomagnetotellurics (CSRMT) in the study of rocks overlying kimberlite pipes in Yakutia/Siberia, Geosciences, 2022, vol. 12, no. 1, p. 34. https://doi.org/10.3390/geosciences12010034

    Article  Google Scholar 

  23. Siripunvaraporn, W., Uyeshima, M., and Egbert, G., Three-dimensional inversion for Network-Magnetotelluric data, Earth, Planets Space, 2004, vol. 56, no. 9, pp. 893–902. https://doi.org/10.1186/bf03352536

    Article  Google Scholar 

  24. Shlykov, A.A. and Saraev, A.K., Estimating the macroanisotropy of a horizontally layered section from controlled-source radiomagnetotelluric soundings, Izv., Phys. Solid Earth, 2015, vol. 51, no. 4, pp. 583–601. https://doi.org/10.1134/S1069351315040102

    Article  Google Scholar 

  25. Stognii, V.V. and Korotkov, Yu.V., Poisk kimberlitovykh tel metodom perekhodnykh protsessov (Search for Kimberlite Bodies by the Method of Transient Processes), Novosibirsk: Malotirazhnaya Tipografiya 2D, 2010.

  26. Ustinov, V.N., Antashchuk, M.G., Zagainyi, A.K., Kukui, I.M., Lobkova, I.P., Mikoev, I.I., and Antonov, S.A., Prospects of diamond deposits discovery in the north of the east- european platform, Rudy Met., 2018, no. 1, pp. 11–26.

  27. Veshev, A.V., Elektroprofilirovanie na postoyannom i peremennom toke (Electric Profiling with Direct and Alternating Current), Leningrad: Nedra, 1980.

  28. Weaver, J.T., Agarwal, A.K., and Lilley, F.E.M., Characterization of the magnetotelluric tensor in terms of its invariants, Geophys. J. Int., 2000, vol. 141, no. 2, pp. 321–336. https://doi.org/10.1046/j.1365-246x.2000.00089.x

    Article  Google Scholar 

  29. Yakovlev, D. and Yakovlev, A., Static shift correction in sedimentary basins, Abstract. 25th EM Induction Workshop, Çeşme, Turkey, 2022, p. 163.

  30. Yakovlev, D.V., Yakovlev, A.G., and Valyasina, O.A., Statistical shift in magnetotelluric curves in sediment basins, VIII Vserossiiskaya shkola-seminar EMZ-2021 (8th All-Russian School-Workshop EMZ-2021), Moscow: 2021, pp. 1–7.

  31. Zorin, N.I. and Yakovlev, A.G., A hybrid receiving line for measuring the electric field in a wide frequency band, Moscow Univ. Geol. Bull., 2021, vol. 76, no. 6, pp. 639–645. https://doi.org/10.3103/S0145875221060090

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.N. Orlov for providing logging data for the work site.

Funding

This work was supported by the Russian Science Foundation (grant no. 21-47-04401) and the resource center “Geomodel” of the Science Park of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shlykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlykov, A.A., Saraev, A.K. & Bobrov, N.Y. Joint Three-Dimensional Interpretation of AMTS and RMT-C Tensor Data in a Region Prospective for Discovery of Primary Diamond Sources (Karelian Isthmus). Izv., Phys. Solid Earth 59, 781–797 (2023). https://doi.org/10.1134/S1069351323050117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323050117

Keywords:

Navigation