Skip to main content
Log in

The Khuvsgul Earthquake of January 12, 2021, ML = 6.9, in the Seismicity Structure of the Tuva–Mongolian Block

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The paper presents the studies of the Khuvsgul earthquake on January 11, 2021 at 21:32 UTC (January 12, 2021 at 05:32 local time), MW = 6.7, ML = 6.9, and the seismicity structure in the aftershock period for the Altai-Sayan mountain region and the Baikal rift zone, where the epicenter of this earthquake was located. Two faults are seismically activated, diverging from the southern end of the aftershock area at an acute angle: one in the northeast and one in the northwest direction, as well as transverse faults between them. According to the epicenter position and studies of the source area by other authors, the main event corresponds to the northeastern fault, and large aftershocks occurred at the junction of the northwestern fault with transverse faults feathering from the east. The main event was immediately followed by a series of large aftershocks, the strongest of which occurred on March 31, 2021 with ML = 6.2 and on May 3, 2021 with ML = 6.4. Spatial changes in the seismic regime of the aftershock region led to the predominant activity of its southern end. The junction area of the collisional structures of the Altai–Sayan folded zone and the rift structures of the Baikal depressions system is distinguished in seismicity as a block structure with increased seismicity near the block boundaries. First of all, these are the Tuva-Mongolian block and the eastern part of the Sayano-Tuva block. After the Khuvsgul earthquake of 2021, a block structure with the activation of the epicentral zones of the 1991 Busingol earthquake, the 2011–2012 Tuva earthquakes, and other structures seismically active until 2021 has increased seismic activity. It is proved that the 2014 Khuvsgul earthquake occurred under the basin of the same name and is associated with other faults than the 2021 earthquake and is not a direct precursor of the 2021–2022 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Ad’yaa, M., On aftershocks of Busingol earthquake, Issledovaniya po poiskam predvestnikov zemletryasenii v Sibiri (Studies on Searching the Precursors of Earthquakes in Siberia), Novosibirsk: Nauka, 1988, pp. 115–117.

    Google Scholar 

  2. Aktual’nye voprosy sovremennoi geodinamiki Tsentral’noi Azii (Topical Problems of Recent Geodynamics of Central Asia), Levi, K.G. and Sherman, S.I., Eds., Novosibirsk: Izd-vo Sib. Otd. Ross. Akad. Nauk, 2005.

    Google Scholar 

  3. Bachmanov, D.M., Kozhurin, A.I., and Trifonov, V.G., The active faults of Eurasia database, Geodin. Tektonofizika, 2017, vol. 8, no. 4, pp. 711–736. https://doi.org/10.5800/gt-2017-8-4-0314

    Article  Google Scholar 

  4. Battogtokh, D., Bayasgalan, A., Wang, K., Ganzorig, D., and Bayaraa, J., The 2021 Mw 6.7 Khankh earthquake in the Khuvsgul rift, Mongolia, Mongolian Geoscientist, 2021, vol. 26, no. 52, pp. 46–61. https://doi.org/10.5564/mgs.v26i52.1361

    Article  Google Scholar 

  5. Belichenko, V.G., Paleotectonic zoning of paleozoides of south-eastern part of the Eastern Sayan, Western Khamar Daban, and Prikhubsugul, Geol. Geofiz., 1985, no. 5, pp. 11–20.

  6. Belichenko, V.G. and Boos, R.G., Bokson-Hubsugul-Dzhabkhan paleomicrocontinent in the structure of Central Asian paleozoides, Geol. Geofiz., 1988, no. 12, pp. 20–28.

  7. Demonterova, E.I., Ivanov, A.V., Reznitskii, L.Z., Belichenko, V.G., Hung, C.-H., Chung, S.-L., Iizuka, Yo., and Wang, K.-L., Formation history of the Tuva-Mongolian Massif (Western Hubsugul region, North Mongolia) based on U-Pb dating of detrital zircons from sandstone of the Darkhat group by the LA-ICP-MS method, Dokl. Earth Sci., 2011, vol. 441, no. 1, pp. 1498–1501. https://doi.org/10.1134/s1028334x11110225

    Article  Google Scholar 

  8. Dobrynina, A.A., Sankov, V.A., Chechelnitsky, V.V., Tcydypova, L.R., and German, V.I., Seismoacoustic effects of the Hovsgol earthquake (M w = 4.9) of December 5, 2014, Dokl. Earth Sci., 2017, vol. 477, no. 2, pp. 1494–1497. https://doi.org/10.1134/s1028334x17120248

    Article  Google Scholar 

  9. Dzhurik, V.I., Klyuchevskii, A.V., Serebrennikov, S.P., Dem’yanovich, V.M., Batsaikhan, Ts., and Bayaraa, G., Seismichnost’ i raionirovanie seismicheskoi opasnosti territorii Mongolii (Seismicity and Zoning of Seismic Hazard in the Territory of Mongolia), Irkutsk: Inst. Zemnoi Kory Sib. Otd. Ross. Akad. Nauk, 2009.

  10. Emanov, A.F., Emanov, A.A., Filina, A.G., and Leskova, E.V., Spatial-temporal peculiarities of seismicity in Altay-Sayan mountain region, Fiz. Mezomekhanika, 2005, vol. 8, no. 1, pp. 49–64.

    Google Scholar 

  11. Emanov, A.F., Emanov, A.A., Filina, A.G., Leskova, E.V., Kolesnikov, Yu.I., and Rudakov, A.D., General and individual in the development of aftershock processes of the largest earthquakes in the Altai-Sayan mountainous region, Fiz. Mezomekhanika, 2006, vol. 9, no. 1, pp. 33–44.

    Google Scholar 

  12. Emanov, A.F., Emanov, A.A., and Leskova, E.V., Seismic activization in the Busingol-Belinsky fault zone, Fiz. Mezomekhanika, 2010, vol. 13, Special Issue, pp. 72–77.

  13. Emanov, A.F., Leskova, E.V., Emanov, A.A., Radziminovich, Ya.B., Gileva, N.A., and Artemova, A.I., The August 16, 2008 Bii-Khem-Belinsky earthquake with K P = 15, M W = 5.7, and I 0 = 7 (Tuva Republic), Zemletryaseniya Severnoi Evrazii (Earthquakes of North Eurasia), Obninsk, Kaluga oblast: 2014a, pp. 378–385.

  14. Emanov, A.F., Emanov, A.A., Leskova, E.V., Seleznev, V.S., and Fateev, A.V., The Tuva earthquakes of December 27, 2011, M L = 6.7, and February 26, 2012, M L = 6.8, and their aftershocks, Dokl. Earth Sci., 2014b, vol. 456, no. 1, pp. 594–597. https://doi.org/10.1134/s1028334x14050249

    Article  Google Scholar 

  15. Emanov, A.F., Emanov, A.A., Fateev, A.V., Soloviev, V.M., Shevkunova, E.V., Gladyshev, E.A., Antonov, I.A., Korabel’shhikov, D.G., Podkorytova, V.G., Yankaytis, V.V., Elagin, S.A., Serezhnikov, N.A., Durachenko, A.V., and Artemova, A.I., Seismological studies in the Altai-Sayan mountain region, Ross. Seismologicheskii Zh., 2021, vol. 3, no. 2, pp. 20–51. https://doi.org/10.35540/2686-7907.2021.2.02

    Article  Google Scholar 

  16. Emanov, A.F., Emanov, A.A., Chechel’nitskii, V.V., Shevkunova, E.V., Radziminovich, Ya.B., Fateev, A.V., Kobeleva, E.A., Gladyshev, E.A., Arapov, V.V., Artemova, A.I., and Podkorytova, V.G., The Khuvsgul earthquake of January 12, 2021 (M W = 6.7, M L = 6.9) and early aftershocks, Izv., Phys. Solid Earth, 2022, vol. 58, no. 1, pp. 59–73. https://doi.org/10.1134/s1069351322010025

    Article  Google Scholar 

  17. Il’in, A., Khubsugul’skii fosforitonosnyi bassein (Khuvsgul Phosphorite-Bearing Basin), Proc. Joint Soviet-Mongolian Expedition, vol. 6, 1973.

    Google Scholar 

  18. Khil’ko, S.D., Kurushin, R.A., Kochetkov, V.M., Misharina, L.A., Mel’nikova, V.I., Gileva, N.A., Lastochkin, S.V., Balzhinnyam, I., and Monkhoo, D., Zemletryaseniya i osnovy seismicheskogo raionirovaniya Mongolii (Earthquakes and Fundamentals of Seismic Zoning of Mongolia), Proc. of Joint Soviet-Mongolian Scientific and Research Geological Expedition, vol. 41, Moscow: Nauka, 1985.

  19. Klyuchevskii, A.V., Dem’yanovich, V.M., and Bayar, G., Evaluation of recurrent intervals and probabilities of major earthquakes in the Baikal region and Mongolia, Geol. Geofiz., 2005, vol. 46, no. 7, pp. 746–762.

    Google Scholar 

  20. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS 2016.

  21. Kochetkov, V.M., Khil’ko, S.D., Zorin, Yu.A., Ruzhich, V.V., Turutanov, E.Kh., Arvisbaagar, N., Bayasgalan, Kozhevnikov, V., Erdenbeleg, B., Chipizubov, A.V., Monkhoo, D., Anikanova, G.A., Klyuchevskii, A.V., Naidich, V.I., Bayar, G., Borovik, N.S., Gileva, N.A., Ad’yaa, M., Balzhinnyam, I., Dzhurik, V.I., Potapov, V.A., Yushkin, V.I., Dugarmaa, T., and Tsembel, L., Seismotektonika i seismichnost’ Prikhubsugul’ya (Seismotectonics and Seismicity of Prihubsugul), Novosibirsk: Nauka, 1993.

    Google Scholar 

  22. Kuz’michev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva. Rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of Tuva-Mongolia massif: Early-Baikal, Late-Baikal, and Early-Caledonian stages), Moscow: Inst. Litosfery Akad. Nauk, 2004.

  23. Levi, K.G., Sherman, S.I., and San’kov, V.A., Recent geodynamics of Asia: Map, principles of composition, Geotektonika, 2009, no. 2, pp. 78–93.

  24. Dem’yanovich, V.M., Klyuchevskii, A.V., and Chernykh, E.N., Lithospheric stress and strain and the seismicity in the Belin-Busiingol fault zone, southern Baikal region, J. Volcanol. Seismol., 2008, vol. 2, no. 1, pp. 40–54. https://doi.org/10.1007/s11711-008-1004-y

    Article  Google Scholar 

  25. Logachev, N.A., Main structural features and geodynamics of Baikal Rift Zone, Fiz. Mezomekhanika, 1999, vol. 2, nos. 1–2, pp. 163–170.

    Google Scholar 

  26. Logachev, N.A., Historic core of the Baikal Rift Zone, Dokl. Earth Sci., 2001, vol. 376, no. 4, pp. 43–46.

    Google Scholar 

  27. Lukhnev, A.V., Lukhneva, O.F., Sankov, V.A., and Miroshnichenko, A.I., Coseismic effects of the 11 January 2021 Hovsgol, Mongolia, earthquake, Geodin. Tektonofizika, 2022, vol. 13, no. 2. https://doi.org/10.5800/gt-2022-13-2s-0626

  28. Mel’nikova, V.I., Gileva, V.A., Seredkina, N.I., and Radziminovich, Ya.B., Strong seismic events on the south-western flank of the Baikal Rift in 2014: November 1, 2014, K P = 13.6, M W = 4.6, I 0 = 7–8 Urik earthquake and December 5, 2014, K P = 13.9, M W = 4.9, I 0 = 7–8 Hovsgol earthquake, Zemletryaseniya Sev. Evrazii, 2020, no. 23, pp. 350–363. https://doi.org/10.35540/1818-6254.2020.23.36

  29. Meltzer, A., Stachnik, J.C., Sodnomsambuu, D., Munkhuu, U., Tsagaan, B., Dashdondog, M., and Russo, R., The Central Mongolia seismic experiment: Multiple applications of temporary broadband seismic arrays, Seismological Res. Lett., 2019, vol. 90, no. 3, pp. 1364–1376. https://doi.org/10.1785/0220180360

    Article  Google Scholar 

  30. Misharina, L.A., Mel’nikova, V.I., and Balzhinnyam, I., South-western boundary of the Baikal Rift Zone from the data on earthquake focal mechanism, Vulkanol. Seismol., 1983, no. 2, pp. 74–83.

  31. Molnar, P., Kurushin, R.A., Kochetkov, V.M., Dem’yanovich, M.G., Borisov, V.A., and Vashchilov, Yu.Ya., Deformation and faulting at major earthquakes in Mongolian-Siberian region, in Glubinnoe stroenie i geodinamika Mongolo-Sibirskogo regiona (Deep Structure and Geodynamics of Mongolian-Siberian Region), Logachev, N.A., Kochetkov, V.M., and Zorin, Yu.A., Eds., Novosibirsk: Nauka, 1995, pp. 5–55.

    Google Scholar 

  32. Oparin, N.V., Sashurin, A.D., Kulakov, G.I., Leont’ev, A.V., Nazarov, L.A., Nazarova, L.A., Tapsiev, A.P., Khachai, O.A., Khachai, O.Yu., Emanov, A.F., Emanov, A.A., Leskova, E.V., Kolesnikov, Yu.I., Nemirovich-Danchenko, M.M., Vostrikov, V.I., Yushkin, V.F., Yakovitskaya, G.E., Akinin, A.A., Kyu, N.G., Panzhin, A.A., Dyad’kov, P.G., Kuchai, O.A., Kesel’man, S.I., and Borisov, V.D., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery. Istoki, parametry, vozdeistvie na ob’’ekty nedropol’zovaniya (Recent Geodynamics of Massiv of Rocks of the Upper Lithosphere Part: Sources, Parameters, Impact on Subsurface Use Objects), Novosibirsk: Izd-vo Sib. Otd. Ross. Akad. Nauk, 2008.

  33. Parfeevets, A.V. and San’kov, V.A., Napryazhennoe sostoyanie zemnoi kory i geodinamika yugo-zapadnoi chasti Baikal’skoi riftovoi zony (Stress State of the Earth’s Crust and Geodynamics of the South-Western Part of the Baikal Rift Zone), Levi, K.G., Ed., Novosibirsk: Izd-vo GEO, 2006.

    Google Scholar 

  34. San’kov, V.A., Miroshnichenko, V.I., Parfeevets, A.V., and Arzhannikova, A.V., New data on Late Cenozoic tectonic stress fields in the Khubsugul region, Mongolia, Dokl. Earth Sci., 2003a, vol. 388, no. 1, pp. 30–33.

    Google Scholar 

  35. San’kov, V.A., Lukhnev, A.V., Miroshnichenko, A.I., Levi, K.G., Ashurkov, S.V., Bashkuev, Yu.B., Dembelov, M.G., Kale, E., Deversher, Zh., Vernol’, M., Bekhtur, B., and Amarzhargal, Sh., Present-day movements of the Earth’s crust in the Mongol-Siberian region inferred from GPS geodetic data, Dokl. Earth Sci., 2003b, vol. 393, no. 8, pp. 1082–1085.

    Google Scholar 

  36. Shebalin, P.N., Aftershocks as indicators of the state of stress in a fault system, Dokl. Earth Sci., 2004, vol. 398, no. 7, pp. 978–982.

    Google Scholar 

  37. Shebalin, P.N., Baranov, S.V., and Dzeboev, B.A., The law of the repeatability of the number of aftershocks, Dokl. Earth Sci., 2018, vol. 481, no. 1, pp. 963–966. https://doi.org/10.1134/s1028334x18070280

    Article  Google Scholar 

  38. Sherman, S.I., Izbrannye trudy. Tektonofizika razlomoobrazovaniya i soputstvuyushchikh protsessov v litosfere (Selected Works: Tectonophysics of Faulting and Accompanying Processes in the Lithosphere), Irkutsk: Institut Zemnoi Kory Sib. Otd. Ross. Akad. Nauk, 2017.

  39. Shkol’nik, S.I., Belichenko, V.G., Reznitskii, L.Z., and Barash, I.G., A fragment of back-arc paleospreading in the Tunka terrane, Dokl. Earth Sci., 2011, vol. 436, no. 1, pp. 61–65. https://doi.org/10.1134/S1028334X10901118

    Article  Google Scholar 

  40. Sorokin, A.G. and Klyuchevskii, A.V., Infrasound signals from earthquakes of December 5, 2014 in the water area of lake Hovsgol, Northern Mongolia, Dokl. Earth Sci., 2019, vol. 484, no. 2, pp. 198–202. https://doi.org/10.1134/S1028334X1902017X

    Article  Google Scholar 

  41. Timoshkina, E.P., Mikhailov, V.O., Smirnov, V.B., Volkova, M.S., and Khairetdinov, S.A., Model of the rupture surface of the Khuvsgul earthquake of January 12, 2021 from InSAR data, Izv., Phys. Solid Earth, 2022, vol. 58, no. 1, pp. 74–79. https://doi.org/10.1134/s1069351322010098

    Article  Google Scholar 

  42. Ufimtsev, G.F., Small depressions in the Baikal Rift Zone, Geogr. Prir. Resur., 2013, no. 4, pp. 28–36.

  43. Vasil’ev, V.P., Belichenko, V.G., and Reznitskii, L.Z., Relation between the ancient and Cainozoic structures at the south-western flank of Baikal Rift Zone, Dokl. Ross. Akad. Nauk, 1997, vol. 353, p. 785.

    Google Scholar 

  44. Zorin, Yu.A., Belichenko, V.G., Turutanov, E.Kh., Kozhevnikov, V.M., Sklyarov, E.V., Tumurtogoo, O., Khozbayar, P., Arvisbaatar, N., and Byamba, Ch., Terrains of Eastern Mongolia and Central Transbaikalia and development of Mongol-Okhotsky fault belt, Geol. Geofiz., 1998, vol. 39, no. 1, pp. 11–25.

    Google Scholar 

Download references

Funding

This work was carried out as part of the state task of the Federal Research Center Unified Geophysical Service of Russian Academy of Sciences (project No. 075-00576-21) and Trofimuk Institute of Petroleum-Gas Geology and Geophysics, Siberian Branch, Russian Academy of Sciences (project No. 0331-2019-0006), using data obtained on the Unique Scientific Facility “Seismo-Infrasonic Complex for Monitoring the Arctic Permafrost and Complex for Continuous Seismic Monitoring of the Russian Federation, Adjacent Territories and the World” (USI SICMAPCCSMRF) (https://ckp-rf.ru/usu/507436/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Emanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emanov, A.F., Emanov, A.A., Chechel’nitskii, V.V. et al. The Khuvsgul Earthquake of January 12, 2021, ML = 6.9, in the Seismicity Structure of the Tuva–Mongolian Block. Izv., Phys. Solid Earth 59, 733–748 (2023). https://doi.org/10.1134/S1069351323050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323050038

Keywords:

Navigation