Skip to main content
Log in

Dissipative Seismicity for Hydrocarbon Reservoir Parameter Evaluation

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The natural seismic background of the Earth and its deep emission component are a form of dissipation of energy of geodynamic processes. The methods of studying the seismic background as a signal generated by an open complex non-linear system (the Earth’s crust) can be grouped under one branch—dissipative seismicity. In this paper, one of such methods, namely, the thermodynamic indicator of the state of rocks, is used for the remote evaluation of the local productivity of the reservoir on the hydrocarbon deposit site. The thermodynamic indicator was created using the Klimontovich entropy and yields quantitative estimates of the local disequilibrium of rocks associated with the activity of geophysical processes. We revealed monotonic, near-linear relationship between the thermodynamic indicator values calculated using the seismic background records and the cumulative thickness of productive layers in the wells in close proximity to recording points. The thermodynamic indicator is calculated assuming that there is a sliding time window threshold that must be taken empirically. The obtained results show that the thermodynamic indicator can be effectively used for outlining the deposit boundaries and choosing the potentially most productive well drilling points by extrema in the indicator value field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V. and Oparin, V.N., From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia, Part I, J. Min. Sci., 2012, vol. 48, no. 2, pp. 203–222.

    Article  Google Scholar 

  2. Aki, K. and Richards, P.G., Quantitative Seismology, Theory and Methods, Vol. 1, San Francisco: Freeman, 1980.

    Google Scholar 

  3. Alekseev, A.S., Tsetsokho, V.A., Belonosova, A.V., Belonosov, A.S., and Skazka, V.V., Forced oscillations of fractured block fluid-saturated layers under vibroseismic actions, J. Min. Sci., 2001, vol. 37, no. 6, pp. 557–566.

    Article  Google Scholar 

  4. Alekseev, A.S., Dedov, V.P., and Trigubovich, G.M., Geophysicists must know mechanics well, Geofizika, 2007, no. 3. 55–62.

  5. Arutyunov, S.L., Loshkarev, G.L., Grafov, B.M., Sirotinskii, Yu.V., Novitskii, M.A., Nemtarev, V.I., Kuznetsov, O.L., Shutov, G.Ya., Rezunenko, V.I., and Chernenko, A.M., Method of vibroseismic prospecting for oil and gas, RF Patent No. 2045079, 1995.

  6. Avsyuk, Yu.N., Prilivnye sily i prirodnye protsessy (Tidal Forces and Natural Processes), Moscow: OIFZ RAN, 1996.

  7. Berezhnoy, D.V., Biryal’tsev, E.V., Biryal’tseva, T.E., Kipot’, V.L., Ryzhkov, V.A., Tumakov, D.N., and Khramchenkov, M.G., Analysis of the spectral characteristics of microseism as a method to study the structure of the geological environment, in Sb. NII Matematiki i mekhaniki Kazanskogo Universiteta (SRI of Mathematics and Mechanics of Kazan University), Elizarov, A.M. and Faridovich, A.D., Eds., Kazan’: KSU, 2008, pp. 360–386.

  8. Castagna, J., Sun, S., and Siegfried, R.W., Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons, Leading Edge, 2003, vol. 22, no. 2, pp. 120–127.

    Article  Google Scholar 

  9. Chebotareva, I.Ya., Emission seismic tomography—the tool to study fracturing and fluidodynamics of the Earth crust, Georesources, 2018, vol. 20, no. 3, pt. 2, pp. 238–245. https://doi.org/10.18599/grs.2018.3.238-245

  10. Chebotareva, I.Ya. and Dmitrievskii, A.N., Dissipative seismicity, Fiz. Mezomekh., 2020, vol. 23, no. 1, pp. 14–32.

    Google Scholar 

  11. Chebotareva, I.Ya. and Volodin, I.A., Criterion of the order degree for self-oscillating regimes in the analysis of geophysical medium dynamics, Dokl. Earth Sci., 2010, vol. 432, no. 1, pp. 618–621.

    Article  Google Scholar 

  12. Chebotareva, I.Ya. and Volodin, I.A., A method for localizing seismic sources whose signals are separated by an order of difference from the background noise, Dokl. Earth Sci., 2011, vol. 437, no. 1, pp. 428–431.

    Article  Google Scholar 

  13. Dimon, P., Kushnick, A.P., and Stokes, J.P., Resonance of a liquid-liquid interface, J. Phys. (Paris), 1988, vol. 49, no. 5, pp. 777–785.

    Article  Google Scholar 

  14. Fawad, M., Hansen, J.A., and Mondol, N.H., Seismic-fluid detection-a review, Earth-Sci. Rev., 2020, vol. 210, Article ID 103347. https://doi.org/10.1016/j.earscirev.2020.103347

    Article  Google Scholar 

  15. Gilyarov, V.L., The kinetic theory of strength and self-organized critical state during fracture of materials, Phys. Solid State, 2005, vol. 47, no. 5, pp. 832–835.

    Article  Google Scholar 

  16. Gilyarov, V.L., Varkentin, M.S., Korsukov, V.E., Korsukova, M.M., and Kuksenko, V.S., Formation of power-law size distributions of defects during fracture of materials, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1404–1408.

    Article  Google Scholar 

  17. Goloshubin, G.M. and Chabyshova, E.A., Converted slow waves in a heterogeneous permeable fluid-saturated medium, Tekhnol. Seismorazved., 2015, no. 3, pp. 10–15.

  18. Goloshubin, G.M., Korneev, V.A., and Vingalov, V.M., Seismic low-frequency effects from oil-saturated reservoir zones, SEG Tech. Program Expanded Abstr., SEG Int. Expo. and 72th Annu. Meet., 2002, pp. 1813–1816.

  19. Goloshubin, G.M., VanSchuyver, C., Korneev, V.A., Silin, D.B., and Vingalov, V.M., Reservoir imaging using low frequencies of seismic reflections, Leading Edge, 2006, vol. 25, no. 5, pp. 527–531.

    Article  Google Scholar 

  20. Grafov, B.M., Arutyunov, S.L., Kazarinov, V.E., Kuznetsov, O.L., Sirotinskii, Yu.V., and Suntsov, A.E., Analysis of the geo-acoustic radiation of oil and gas deposits using the ANCHAR technology, Geofizika, 1998, no. 5, pp. 24–28.

  21. Guliev, I.S., Yusubov, N.P., and Guseynova, Sh.M., On the formation mechanism of mud volcanoes in the South Caspian Basin according to 2D and 3D seismic data, Izv., Phys. Solid Earth, 2020, vol. 56, no. 5, pp. 721–727.

    Article  Google Scholar 

  22. Holzner, R., Eschle, P., Zurcher, H., Lambert, M., Graf, R., Dangel, S., and Meier, P.F., Applying microtremor analysis to identify hydrocarbon reservoirs, First break, 2005, vol. 23, no. 5, pp. 41–49.

    Article  Google Scholar 

  23. Klimontovich, Yu.L., Problems in the statistical theory of open systems: Criteria for the relative degree of order in self-organization processes, Sov. Phys.-Usp., 1989, vol. 32, no. 5, pp. 416–433.

    Article  Google Scholar 

  24. Klimontovich, Yu.L., Statisticheskaya teoriya otkrytykh system, tom 1 (Statistical Theory of Open Systems, vol. 1), Moscow: Yanus, 1995.

  25. Klimontovich, Yu.L., Introduction to physics of open systems, Ch. 7 in Atlas vremennykh variatsii prirodnykh, antropogennykh i sotsial’nykh protsessov, tom 2: Tsiklicheskaya dinamika v prirode i obshchestve (Atlas of Time Variations of Natural, Antropogenic, and Social Processes, Vol. 2: Cyclical Dynamic in the Nature and the Society), Laverov, N.P., Ed., Moscow: Nauchnyi mir, 1998, pp. 37–50.

  26. Korneev, V.A., Goloshubin, G.M., Daley, T.M., and Silin, D.B., Seismic low frequency effects in monitoring of fluid-saturated reservoirs, Geophysics, 2004, vol. 69, no. 2, pp. 522–532.

    Article  Google Scholar 

  27. Krauklis, P.V. and Krauklis, L.A., The slow wave in an anisotropic liquid layer modelling a reservoir, Zap. Nauchn. Sem. POMI, 2001, vol. 275, pp. 132–139.

    Google Scholar 

  28. Kudryavtsev, N.A., Genezis nefti i gaza (Genesis of Oil and Gas), Leningrad: Nedra, 1973.

  29. Kukuruza, V.D., Krivosheev, V.T., Ivanova, E.Z., and Pekel’naya Ye.V., Geoelectrical model of a hydrocarbon deposit, Geoinformatika, 2009, no. 4, pp. 50–55.

  30. Kurlenya, M.V. and Serdyukov, S.V., Low-frequency resonances of seismic luminescence of rocks in a low-energy vibration-seismic field, J. Min. Sci., 1999, vol. 35, no. 1, pp. 1–5.

    Article  Google Scholar 

  31. Lambert, M.-A., Schmalholz, S.M., Saenger, E.H., and Steiner, B., Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria, Geophys. Prospect., 2009, vol. 57, no. 3, pp. 393–411.

    Article  Google Scholar 

  32. Leonov, M.G., Kocharyan, G.G., Revuzhenko, A.F., and Lavrikov, S.V., Tectonics of rock loosening: geological data and physics of the process, Geodin. Tektonofiz., 2020, vol. 11, no. 3, pp. 491–521.

    Article  Google Scholar 

  33. Lukin, A.E., Geophysical methods and the problem of unconventional natural gas source detection, Geol. Zh., 2014, no. 1 (346), pp. 7–22.

  34. Lukk, A.A., Descherevskii, A.V., Sidorin, A.Ya. and Sidorin I.A., Variatsii geofizicheskikh polei kak proyavlenie determinirovannogo khaosa vo fraktal’noi srede (Variations of Geophysical Fields as a Manifestation of Determinate Chaos in Fractal Medium), Strakhov, V.N., Ed., Moscow: OIFZ RAN, 1996.

    Google Scholar 

  35. Makhous, M., Rode, E.P., and Kaya, S., Application of the Infrasonic Passive Differential Spectroscopy (IPDS) for hydrocarbon direct detection and reservoir monitoring in fields of the North-Caspian Basin: Achievements and challenges, Reservoir Characterization and Simulation Conf., Abstracts. SPE, Abu Dhabi, 19–21 October 2009, Abu Dhabi: EAGE, 2009, Article ID SPE 125385.

  36. Marple, S.L. Jr., Digital Spectral Analysis: with Applications, New Jersey: Prentice Hall, 1987.

    Google Scholar 

  37. Mukhamediev, Sh.A., On discrete structure of geologic medium and continual approach to modelling its movements, Geodinam. Tektonofiz., 2016, vol. 7, no. 3, pp. 347–381.

    Article  Google Scholar 

  38. Napreev, D.V. and Olenchenko, V.V., Integration of geophysical and geochemical methods in hydrocarbon prospecting in the Ust’-Tym oil-and-gas bearing region, Neftegazov. Geol. Teor. Prakt., 2010, vol. 5, no. 1, Article ID 16. http://www.ngtp.ru/rub/4/6_2010.pdf

  39. Pavlinova, N.V. and Shakhova, A.Yu., Role of mud volcanism in the South-Piltun oil and gas formation of Sakhalin Offshore Piltun-Astokh Deposit, Vestn. RUDN, Ser. Inzh. Issled., 2016, no. 2, pp. 74–81.

  40. Pirson, S.J., Significant advances in magneto-electric exploration, in Unconventional Methods in Exploration for Petroleum and Natural Gas, Proc. Symp. II-1979, Gottlieb, B.M., Ed., Dallas: Southern Methodist University Press, 1981, pp. 169–196.

  41. Problemy nelineinoi seismiki (Problems of Non-Linear Seismology), Nikolaev, A.V. and Galkin, I.N., Eds., Moscow: Nauka, 1987.

    Google Scholar 

  42. Quintal, B., Schmalholz, S.M., and Podladchikov, Y.Y., Low-frequency reflections from a thin layer with high attenuation caused by interlayer flow, Geophysics, 2009, vol. 74, no. 1, pp. N15–N23.

    Article  Google Scholar 

  43. Rode, E.D., Nasr, H., and Makhous, M., Is the future of seismic passive?, First break, 2010, vol. 28, no. 7, pp. 77–80.

    Article  Google Scholar 

  44. Sadovskii, M. A., Bolkhovitinov, L.G. and Pisarenko, V.F., Deformirovanie geofizicheskoi sredy i seismicheskii protsess (Deformation of Geophysical Medium and Seismic Process), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1987.

  45. Saenger, E.H., Schmalholz, S.M., Lambert, M.-A., Nguyen, T.T., Torres, A., Metzger, S., Habiger, R.M., Müller, T., Rentsch, S., and Méndez-Hernández, E., A passive seismic survey over a gas field: Analysis of low-frequency anomalies, Geophysics, 2009, vol. 74, no. 2, pp. O29–O40.

    Article  Google Scholar 

  46. Shaidurov, G.Ya., Kudinov, D.S., Potylitsyn, V.S., and Shaidurov, R.G., Observation of the seismoelectric effect in a gas condensate field in the Earth’s natural electromagnetic and seismic noise of 0.1-20 Hz, Russ. Geol. Geophys., 2018, vol. 59, no. 5, pp. 566–570.

    Article  Google Scholar 

  47. Suntsov, A.E. and Grafov, B.M., Drop-bubble model of radiating hydrocarbon deposit, Technol. Seismorazved., 2010, no. 1, pp. 9–17.

  48. Terekhov, S.A., Vorontsov, A.M., and Rerikh, V.K., Evaluating the contribution of the resonance component to the microseismic background energy above and outside hydrocarbon deposits, Technol. Seismorazved., 2010, no. 1, pp. 41–43.

  49. Tsivadze, A.Yu., An advanced technique of searching for oil and gas deposits, Herald Russ. Acad. Sci., 2014, vol. 84, no. 2, pp. 142–145.

    Article  Google Scholar 

  50. Turuntaev, S.B. and Mel’chaeva, O.Yu., Analysis of trigger seismic processes by the methods of non-linear dynamics, in Triggernye effekty v geosistemakh: Materialy Vseross. seminara-soveshchaniya (Trigger Effects in Geosystems: Proc. All-Russ. Workshop), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: GEOS, 2010, pp. 124–136.

  51. Turuntaev, S.B., Vorokhobina, S.V., and Mel’chaeva, O. Yu., Identifying induced variations in the seismic regime by the methods of non-linear dynamics, Izv., Phys. Solid Earth, 2012, vol. 48, no. 3, pp. 228–240.

    Article  Google Scholar 

  52. Valyaev, B.M., Hydrocarbon degassing of the Earth, geotectonics and the origin of oil and gas, in Degazatsiya Zemli i genesis neftegazovykh mestorozhdenii, k 100-letiyu so dnya rozhdeniya P.N. Kropotkina (Degassing of the Earth and genesis of oil and gas fields. To the 100th anniversary of P.N. Kropotkin), Dmitrievskii, A.N. and Valyaev, B.M., Eds., 2011, Moscow: GEOS, pp. 10–30.

  53. Vedernikov, G.V., Zharkov, A.V., and Maksimov, L.A., Experiments on estimation of geodynamic noise from oil and gas reservoirs, Geofizika, Special Edition, 2001, pp. 96–98.

    Google Scholar 

  54. Yurova, M.P. and Isaeva, G.Yu., Historical aspects and modern approach to forecasting non-structural petroleum traps, Aktual. Probl. Nefti Gaza, 2019, no. 3(26), Article ID 7.

  55. Zaitsev, V.Yu., “Non-classical” manifestations of microstructure-induced acoustic nonlinearities: the case of contact-bearing media, in Nelineinye volny 2006 (Nonlinear Waves – 2006), Gaponov-Grekhov, A.V. and Nekorkin, V.I., Eds., Nizhnii Novgorod: IPF RAN, 2007, pp. 170–190.

Download references

ACKNOWLEDGEMENTS

We are grateful to the academician of the Russian Academy of Sciences A.N. Dmitrievskii for fruitful discussion, comments and recommendations.

Funding

The study was carried out with financial support of the state assignment of OGRI RAS (Theme No. 122022800270-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Chebotareva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebotareva, I.Y., Rode, E.D. Dissipative Seismicity for Hydrocarbon Reservoir Parameter Evaluation. Izv., Phys. Solid Earth 59, 650–661 (2023). https://doi.org/10.1134/S1069351323040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323040031

Keywords:

Navigation