Skip to main content
Log in

Modeling the Accumulation and Transition to the Relic State of Methane Hydrates in the Permafrost of Northwestern Siberia

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—This paper presents the results of numerical modeling of the permafrost thermal regime and thermobaric conditions of methane hydrates in the north of Western Siberia over the past 70 thousand years. The area of hydrate formation was determined and the rate of accumulation of hydrates was estimated in connection with the migration of fluid from the underlying gas-saturated layers under the conditions of cover glaciation. The estimates obtained for the change in hydrate saturation as a result of fluid migration during the 10 thousand-year glaciation period, depending on the permeability of the soil, are from 6 to 40% in the upper 350 m. Based on quantitative characteristics of the equilibrium and metastable states of methane hydrates, the conditions for the preservation of relict methane hydrates in permafrost under the paleoclimatic scenario were determined, taking into account periods of ice cover and transgression. It is shown that due to the effect of self-preservation at temperatures below –4°C, it is possible to preserve relict methane hydrates in the upper 200 m of soil under non-equilibrium conditions. The effect of lowering the temperature while the hydrates dissociate prevents the complete decomposition of the deposit and leads to an increase in the thickness of the frozen soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Anisimov, O.A., Velichko, A.A., Demchenko, P.F., Eliseev, A.V., Mokhov, I.I., and Nechaev, V.P., The effect of the climate change on permafrost in the past, present and future, Izv., Atmos. Ocean. Phys., 2002, vol. 38, suppl. 1, pp. 25–39.

    Google Scholar 

  2. Anisimov, O. A., Anokhin, Yu.A., Lavrov, S.A., Malkova, G.V., Myach, L.T., Pavlov, A.V., Romanovskii, V.A., Streletskii, D.A., Kholodov, A.L., and Shiklomanov, N.I., Continental permafrost, Ch. 8 of Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh system (Methods of Evaluation of the Consequences of Climate Change for Physical and Biological Systems), Semenov, S.M., Ed., Moscow: NITs Planeta, 2012, pp. 268–328.

  3. Are, F.E., The problem of the emission of deep-buried gases to the atmosphere, Kriosf. Zemli, 1998, vol. 2, no. 4, pp. 42–50.

    Google Scholar 

  4. Arzhanov, M.M. and Mokhov, I.I., Temperature trends in the permafrost of the Northern hemisphere: comparison of model calculations with observations, Dokl. Earth Sci., 2013, vol. 449, no. 1, pp. 319–323.

    Article  Google Scholar 

  5. Arzhanov, M.M., Malakhova, V.V., and Mokhov, I.I., Simulation of the conditions for the formation and dissociation of methane hydrate over the last 130 000 years, Dokl. Earth Sci., 2018, vol. 480, no. 2, pp. 826–830.

    Article  Google Scholar 

  6. Arzhanov, M.M., Malakhova, V.V., and Mokhov, I.I., The effect of ice sheets on the thermal state of the permafrost and the methane hydrates, Proc. SPIE 11208, 25th Int. Symp. on Atmospheric and Ocean Optics: Atmospheric Physics, Matvienko, G.G. and Romanovskii, O.A., Eds., Novosibirsk, 2019.

  7. Arzhanov, M.M., Malakhova, V.V., and Mokhov, I.I., Modeling thermal regime and evolution of the methane hydrate stability zone of the Yamal peninsula permafrost, Permafrost Periglac. Proc., 2020, vol. 31, no. 4, pp. 487–496.

    Article  Google Scholar 

  8. Badu, Yu.B., The geological structure of the cryogenic strata in the north of Western Siberia, Eng. Geocryol., 2011, no. 2, pp. 40–55.

  9. Badu, Yu.B., The influence of gas bearing structures on the cryogenic strata thickness in Yamal area, Earth’s Cryosphere, 2014, vol. 18, no. 3, pp. 11–22.

    Google Scholar 

  10. Badu, Yu.B., Ice content of cryogenic strata (permafrost interval) in gas-bearing structures, Northern Yamal, Earth’s Cryosphere, 2015, vol. 19, no. 3, pp. 9–18.

    Google Scholar 

  11. Bogoyavlenskii, V.I., The danger of catastrophic gas emissions in the permafrost zone of the Arctic. Funnels on the Yamal and Taymyr Peninsulas, Buren. Neft, 2014, no. 9, pp. 13–18.

  12. Bogoyavlenskii, V.I. and Bogoyavlenskii I.V., Formation of hydrocarbon deposits in the upper section and gas emission craters, Neftegaz.ru, 2019, vol. 85, no. 1, pp. 48–55.

  13. Bogoyavlenskii, V.I. and Garagash, I.A., Justification of generation of gas emission craters in the Arctic by mathematical modelling, Arktika: Ekol. Ekon., 2015, vol. 19, no. 3, pp. 12–17.

    Google Scholar 

  14. Chuvilin, E.M. and Davletshina, D.A., Formation and accumulation of pore methane hydrates in permafrost: experimental modelling, Geosciences (Switz.), 2018, vol. 8, no. 12, pp. 467–481.

    Article  Google Scholar 

  15. Chuvilin, E.M., Yakushev, V.S., Perlova, E.V., and Kondakov, V.V., Gas component of permafrost rock masses within the Bovanenkovo gas condensate field (Yamal Peninsula), Dokl. Akad. Nauk, 1999, vol. 369, no. 4, pp. 522–524.

    Google Scholar 

  16. Chuvilin, E.M., Yakushev, V.S., and Perlova, E.V., Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia, Polarforschung, 2000, vol. 68, no. 1-3, pp. 215–219.

    Google Scholar 

  17. Chuvilin, E.M., Tumskoy, V.E., Tipenko, G.S., Gavrilov, A.V., Bukhanov, B.A., Tkacheva, E.V., Audibert-Hayet, A., and Cauquil, E., Relic gas hydrate and possibility of their existence in permafrost within the South-Tambey gas field, Proc. SPE Arctic and Extreme Environments Conf. and Exh., Moscow, 2013, vol. 3, Article ID SPE-166925-MS.

  18. Chuvilin, E.M., Bukhanov, B.A., Davletshina, D.A., Grebenkin, S.I., and Istomin, V.A., Dissociation and selfpreservation of gas hydrates in permafrost, Geosciences (Switz.), 2018, vol. 8, no. 12, pp. 431–442.

    Article  Google Scholar 

  19. Chuvilin, E.M., Grebenkin, S.I., and Zhmaev, M., Gas Permeability of sandy sediments: effects of phase changes in pore ice and gas hydrates, Energy Fuels, 2021a, vol. 35, no. 9, pp. 7874–7882.

    Article  Google Scholar 

  20. Chuvilin, E.M., Sokolova, N.S., Bukhanov, B.A., Davletshina, D.A., and Spasennykh, M.Yu., Formation of gas-emission craters in Northern West Siberia: shallow controls, Geosciences (Switz.), 2021b, vol. 11. no. 9, pp. 393–407.

    Article  Google Scholar 

  21. Collett, T.S., Kvenvolden, K.A., Magoon, L.B., and Bird, K.J., Geochemical and geologic controls on the inferred occurrence of natural gas hydrate in the Kuparuk 2D-15 well, North Slope, Alaska, Ch. Northern Alaska of Geologic Studies in Alaska by the U.S. Geological Survey during 1986, Hamilton, T.D. and Galloway, J.P., Eds., U.S. Geological Survey Circular Ser., vol. 998, 1987, pp. 24–26.

  22. Dahl-Jensen, D., Gundestrup, N., Gogineni, S.P., and Miller, H., Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations, Ann. Glaciol., 2003, vol. 37, no. 1, pp. 207–212.

    Article  Google Scholar 

  23. Dvoretskii, P.I., Izotopnyi sostav prirodnykh gazov severa Zapadnoy Sibiri. Geologiya i razvedka gazovykh i gazokondensatnykh mestorozhdeniy (The Isotopic Composition of Natural Gases in the North of Western Siberia. Geology and Exploration of Gas and Gas Condensate Fields), Dvoretskii, P.I., Goncharov, V.S., Yesikov, A.D., Eds., Moscow: Gazprom, 2000.

    Google Scholar 

  24. Dvornikov, Yu.A., Leibman, M.O., Khomutov, A.V., Kizyakov, A.I., Semenov, P., Bussmann, I., Babkin, E.M., Heim, B., Portnov, A., Babkina, E.A., Streletskaya, I.D., Chetverova, A.A., Kozachek, A., and Meyer, H., Gas-emission craters of the Yamal and Gydan peninsulas: a proposed mechanism for lake genesis and development of permafrost landscapes, Permafrost Periglac. Proc., 2019, vol. 30, no. 3, pp. 146–162.

    Google Scholar 

  25. Fedoseev, S.M., Gas hydrates in permafrost, Nauka Obraz., 2006, vol. 41, no. 1, pp. 22–27.

    Google Scholar 

  26. Ganopolski, A., Calov, R., and Claussen, M., Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim. Past, 2010, vol. 6, no. 2, pp. 229–244.

    Article  Google Scholar 

  27. Gataullin V., Mangerud J., and Svendsen J.I. The extent of the Late Weichselian ice sheet in the southeastern Barents Sea, Global Planet. Change, 2001, vol. 31, no.1-4, pp. 453–474.

    Article  Google Scholar 

  28. Gavrilov, A., Malakhova, V.V., Pizhankova, E., and Popova, A., Permafrost and gas hydrate stability zone of the glacial part of the East-Siberian shelf, Geosciences (Switz.), 2020, vol. 10, no. 12, pp. 484–506.

    Article  Google Scholar 

  29. Hu, H. and Argyropoulos, S.A., Mathematical modelling of solidification and melting: a review, Modell. Simul. Mater. Sci. Eng., 1996, vol. 4, no. 4, pp. 371–396.

    Article  Google Scholar 

  30. Ingólfsson, Ó., Möller, P., and Lokrantz, H., Late Quaternary marine-based Kara Sea ice sheets: a review of terrestrial stratigraphic data highlighting their formation, Polar Res., 2008, vol. 27, no. 2, pp. 152–161.

    Article  Google Scholar 

  31. Istomin, V.A. and Yakushev, V.S., Gazovye gidraty v prirodnykh usloviyakh (Gas Hydrates in the Natural Conditions), Moscow: Nedra, 1992.

  32. Istomin, V.A., Yakushev, V.S., Makhonina, N.A., Kvon, V.G., and Chuvilin, E.M., The effect of self-preservation of gas hydrates, Gas Ind., 2006, no. 4, pp. 16–27.

  33. Khimenkov, A.N., Vlasov, A.N., Volkov-Bogorodskii, D.B., Sergeev, D.O., and Stanilovskaya, Yu.V., Fluid dynamic geosystems in permafrost. Part 2. Cryolithodynamic and cryogaseous dynamic geosystems, Arktika Antarkt., 2018, vol.2, no. 2, pp. 48–70.

    Google Scholar 

  34. Khimenkov, A.N., Sergeev, D.O., Vlasov, A.N., and Volkov-Bogorodskii, D.B., Explosive processes in the permafrost zone as a new type of geocryological hazard, Geoekol. Inzh. Geol., Gidrogeol., Geokriol., 2019, no. 6, pp. 30–41.

  35. Kizyakov, A.I., Sonyushkin, A.V., Leibman, M.O., Zimin, M.V., and Khomutov, A.V., Geomorphological conditions of the gas-emission crater and its dynamics in central Yamal, Earth’s Cryosphere, 2015, vol. 19, no. 2, pp. 13–22.

    Google Scholar 

  36. Kizyakov, A., Zimin, M.V., Sonyushkin, A., Dvornikov, Yu., Khomutov, A., and Leibman, M., Comparison of gas emission crater geomorphodynamics on Yamal and Gydan peninsulas (Russia), based on repeat very-high-resolution stereopairs, Remote Sens., 2017, vol. 9, no. 10, pp. 1023–1038.

    Article  Google Scholar 

  37. Kleman, J., Fastook, J., Ebert, K., Nilsson, J., and Caballero, R., Pre-LGM Northern Hemisphere ice sheet topography, Clim. Past, 2013, vol. 9, no. 5, pp. 2365–2378.

    Article  Google Scholar 

  38. Kuzin, I.L., On the priority in the study of surface gas emissions in Western Siberia, Geol. Geofiz., 1990, vol. 31, no. 3, pp. 142–144.

    Google Scholar 

  39. Lambeck, K., Purcell, A., Funde, S., Kjaer, K.H., Larsen, E., and Moller, P., Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling, Boreas, 2006, vol. 35, pp. 539–575.

    Article  Google Scholar 

  40. Leibman, M.O. and Kizyakov, A.I., A new natural phenomenon in the permafrost zone, Priroda, 2016, no. 2, pp. 15–24.

  41. Malakhova, V.V., Numerical simulation of possible methane flows in the atmosphere resulting from submarine fluid venting, Atmos. Oceanic Opt., 2009, vol. 22, no. 4, pp. 487–492.

    Article  Google Scholar 

  42. Malakhova, V.V. and Eliseev, A.V., Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments, Global Planet. Change, 2020, vol. 192, Article ID 103249.

    Article  Google Scholar 

  43. Mirzadzhanzade, A.Kh., Khasanov, M.M., and Bakhtizin, R.N., Modelirovanie protsessov neftegazodobychi. Nelineynost’, neravnovestnost’, neopredelennost’ (Modelling of Oil and Gas Production Processes. Non-linearity, Non-equilibrium, Uncertainty), Moscow-Izhevsk: Inst. Komp. Issled., 2004.

  44. Mokhov, I.I., Bezverkhnii, V.A., and Karpenko, A.A., Diagnosis of relative variations in atmospheric greenhouse gas contents and temperature from Vostok Antarctic Ice-Core Paleoreconstructions, Izv., Atmos. Ocean. Phys., 2005, vol. 41, no. 5, pp. 579–592.

    Google Scholar 

  45. Moridis, G.J., Numerical studies of gas production from methane hydrates, SPE J., 2003, vol. 8, no. 4, pp. 359–370.

    Article  Google Scholar 

  46. Olenchenko, V.V., Sinitskii, A.I., Antonov, E.Yu., Eltsov, I.N., Kushnarenko, O.N., Plotnikov, A.E., Potapov, V.V., and Epov, M.I., Results of geophysical surveys of the area of new geological formation known as the “Yamal crater,” Earth’s Cryosphere, 2015, vol. 19, no. 4, pp. 84–95.

    Google Scholar 

  47. Pavlov, A.V. and Malkova, G.V., Small-scale mapping of trends of the contemporary ground temperature changes in the Russian north, Kriosf. Zemli, 2009, vol. 13, no. 4, pp. 32–39.

    Google Scholar 

  48. Perlova, E.V., Miklyaeva, E.S., Leonov, S.A., Tkacheva, E.V., and Ukhova, Yu.A., Gas hydrates on the Yamal Peninsula and the adjacent Kara Sea shelf as an obstacle to the development of the region, Nauchn. Tekhn. Sb. Vesti Gazovoy Nauki, 2017, vol. 31, no. 3, pp. 255–262.

    Google Scholar 

  49. Romanovskii, N.N., Osnovy kriogeneza litosfery (Fundamentals of the Lithosphere Cryogenesis), Moscow: MGU, 1993.

  50. Schaefer, K., Lantuit, H., Romanovsky, V.E., Schuur, E.A.G., and Witt, R., The impact of the permafrost carbon feedback on global climate, Environ. Res. Lett., 2014, vol. 9, no. 8, Article ID 085003.

    Article  Google Scholar 

  51. Shagapov, V.Sh. and Musakaev, N.G., Dinamika obrazovaniya i razlozheniya gidratov v sistemakh dobychi, transportirovki i khraneniya gaza (Dynamics of Formation and Dissociation of Hydrates in Gas Production, Transportation and Storage Systems), Fedorov, K.M., Ed., Moscow: Nauka, 2016.

    Google Scholar 

  52. Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and Gustafsson, O., Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf, Science, 2010, vol. 327, no. 5970, pp. 1246–1250.

    Article  Google Scholar 

  53. Siegert, M.J. and Dowdeswell, J.A., Numerical reconstructions of the Eurasian Ice Sheet and climate during the Late Weichselian, Quat. Sci. Rev., 2004, vol. 23, no. 11-13, pp. 1273–1283.

    Article  Google Scholar 

  54. Skorobogatov, V.A., Stroganov, L.V., and Kopeev, V.D., Geologicheskoe stroenie i neftegazonosnost’ Yamala (The Geological Structure and Gas and Oil Presence in Yamal), Moscow: Nedra, 2003.

  55. Soin, D.A. and Skorobogatov, V.A., Thermobaric conditions of the oil and gas presence in the north of Western Siberia (on-shore and off-shore), Nauchn. Tekhn. Sb. Vesti Gazovoy Nauki, 2013, vol. 16, no. 5, pp. 59–65.

    Google Scholar 

  56. Stranne, C., O’Regan, M., and Jakobsson, M., Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics, Geophys. Res. Lett., 2016, vol. 43, no. 16, pp. 8703–8712.

    Article  Google Scholar 

  57. Suetnova, E.I., Accumulation of gas hydrates near submarine mud volcanoes, Geofiz. Issled., 2016, vol. 17, no. 4, pp. 37–46.

    Google Scholar 

  58. Suetnova, E.I., Sobisevich, A.L., and Zhostkov, R.A., The sub-bottom gas hydrate accumulations evolution as a result of some peculiarities of filtration processes in deep structures of mud volcanoes, Aktual. Probl. Nefti Gaza, 2018, vol. 23, no. 4, pp. 1–6.

    Google Scholar 

  59. Trofimuk, A.A., Makogon, Yu.F., and Yakushev, V.S., Influence of the dynamics of hydrate formation zones on the temperature regime of rocks in permafrost, Geol. Geofiz., 1986, vol. 27, no. 11, pp. 3–10.

    Google Scholar 

  60. Yakushev, V.S., Prirodnyi gaz i gazovye gidraty v kriolitozone (Natural gas and gas hydrates in permafrost), Moscow: VNIIGAZ, 2009.

  61. Yakushev, V.S., Genetic types of hydrocarbon gases in permafrost, Earth’s Cryosphere, 2015, vol. 19, no. 3, pp. 64–68.

    Google Scholar 

  62. Yakushev, V.S., Perlova, E.V., Makhonina, N.A., Chuvilin, E.M., and Kozlova, E.V., Gas hydrates in deposits on continents and islands, Ross. Khim. Zh., 2003, vol. 47, no. 3, pp. 80–90.

    Google Scholar 

Download references

Funding

The hydrate saturation of soil was calculated under the Russian Science Foundation’s Project No. 19-17-00240, conditions of the formation and destabilization of methane hydrates were estimated under the Russian Science Foundation’s Project No. 21-17-00012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Arzhanov or V. V. Malakhova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzhanov, M.M., Malakhova, V.V. Modeling the Accumulation and Transition to the Relic State of Methane Hydrates in the Permafrost of Northwestern Siberia. Izv., Phys. Solid Earth 59, 242–253 (2023). https://doi.org/10.1134/S1069351323020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323020040

Key words:

Navigation