Skip to main content
Log in

Analytical Models of Time-Dependent Physical Fields of the Earth: Local Version

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—A new method for analytical description of time-dependent signals of different nature based on local and regional versions of the method of linear integral representations in spaces of different dimensions is proposed. The inverse problem of finding the field sources is reduced to solving ill-conditioned systems of linear algebraic equations with an approximate right-hand side. The results of a mathematical experiment on finding elements of nonstationary gravity and magnetic fields of the Earth are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Acuna, M., Connerney, J., Ness, N., Lin, R., Mitchell, D., Carlson, C., McFadden, J., Anderson, K., Reme, H., Mazelle, C., Vignes, D., Wasilewski, P., and Cloutier, P., Global distribution of crustal magnetism discovered by the mars global surveyor MAG/ERExperiment, Science, 1999, vol. 284, pp. 790–793.

    Article  Google Scholar 

  2. Arkani-Hamed, J., An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data, J. Geophys. Res.: Planets, 2002, vol. 107, Paper ID 5083. https://doi.org/10.1029/2001JE001835

  3. Arnold, V.I. and Khesin, B.A., Topological Methods in Hydrodynamics, New York: Springer, 1998.

    Book  Google Scholar 

  4. Budak, B.M., Samarskii, A.A., and Tikhonov, A.N., Sbornik zadach po matematicheskoi fizike (Problem Book in Mathematical Physics), Moscow: Nauka, 1980.

  5. Dolgal, A.S. and Bychkov, S.G., Estimation of differences in gravity anomalies for flat and spherical Earth models, Mater. Vseross. konf. mezhdunar. uchastiem “Devyatye nauchn. chteniya Yu.P. Bulashevicha”: Glubinnoe stroenie, geodinamika, teplovoe pole Zemli (Proc. All-Russ. Conf. with Int. Participation “The Ninth Bulashevich Scientific Readings”: Deep Structure, Geodynamics, Thermal Field of the Earth, Interpretation of Geophysical Fields), Yekaterinburg, 2017, Yekaterinburg: IGF UrO RAN, 2017, pp. 169–173.

  6. Dolgal, A.S., Simanov, A.A., and Khokhlova, V.V., Allowance for the Earth’s sphericity in quantitative interpretation of gravity anomalies, Georesursy, 2015, no. 4-2 (63), pp. 56–61.

  7. Frik, P.G, Sokolov, D.D, and Stepanov, R.A., Wavelets for the space-time structure analysis of physical fields, Phys.-Usp., 2022, vol. 65, pp. 62–89.

    Article  Google Scholar 

  8. Gudkova, T., Stepanova, I., and Batov, A., Density anomalies in subsurface layers of mars: model estimates for the site of the InSight mission seismometer, Sol. Syst. Res., 2020, vol. 54, no. 1, pp. 15–19. https://doi.org/10.1134/S0038094620010037

    Article  Google Scholar 

  9. Gudkova, T., Stepanova, I., Batov, A., and Shchepetilov, A., Modified method S- and R-approximations in solving the problems of Mars’s morphology, Inverse Probl. Sci. Eng., 2021, vol. 29, pp. 790–804. https://doi.org/10.1080/17415977.2020.1813125

    Article  Google Scholar 

  10. Kazantsev, S.G. and Kardakov, V.B., Poloidal-toroidal decomposition of solenoidal vector fields in the ball, J. Appl. Ind. Math, 2019, vol. 13, no. 3, pp. 480–499.

    Article  Google Scholar 

  11. Langlais, B., Purucker, M. E., and Mandea, M., Crustal magnetic field of Mars, J. Geophys. Res., 2004, vol. 109, no. E2, Paper ID E02008. https://doi.org/10.1029/2003JE002048

  12. Meyer, B., Chulliat, A., and Saltus, R., EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution), Version 3, Asheville: NOAA National Centers for Environmental Information, 2017. https://doi.org/10.7289/V5H70CVX

    Book  Google Scholar 

  13. Mikhailov, V.O., Timoshkina, E.P., Kiseleva, E.A., Khairetdinov, S.A., Dmitriev, P.N., Kartashov, I.M., and Smirnov, V.B., Problems of the joint inversion of temporal gravity variations with the data on land and seafloor displacements: a case study of the Tohoku-Oki earthquake of March 11, 2011, Izv., Phys. Solid Earth, 2019, vol. 55, no. 5, pp. 746–752.

    Article  Google Scholar 

  14. Oliveira, J.S., Langlais, B., Pais, M.A., and Amit, H., A modified Equivalent Source Dipole method to model partially distributed magnetic field measurements, with application to Mercury, J. Geophys. Res.: Planets, 2015, vol. 120, no. 6, pp. 1075–1094. https://doi.org/10.1002/2014JE004734

    Article  Google Scholar 

  15. Pan, L., Quantin, C., Tauzin, B., Michaut, C., Golombek, M., Lognonné, P., Grindrod, P., Langlais, B., Gudkova, T., Stepanova, I., Rodriguez, S., and Lucas, A., Crust stratigraphy and heterogeneities of the first kilometers at the dichotomy boundary in western Elysium Planitia and implications for InSight lander, Icarus, 2020, vol. 338, Paper ID 113511. https://doi.org/10.1016/j.icarus.2019.113511

  16. Portniaguine, O. and Zhdanov, M., Focusing geophysical inversion images, Geophysics, 1999, vol. 64, no. 3, pp. 874–887.

    Article  Google Scholar 

  17. Portniaguine, O. and Zhdanov, M., 3-D magnetic inversion with data compression and image focusing, Geophysics, 2002, vol. 67, no. 5, pp. 1532–1541.

    Article  Google Scholar 

  18. Raevskiy, D.N. and Stepanova, I.E., On the solution of inverse problems of gravimetry by the modified method of S-approximations, Izv., Phys. Solid Earth, 2015a, vol. 51, no. 2, pp. 207–218.

    Article  Google Scholar 

  19. Raevskiy, D.N. and Stepanova, I.E., The modified method of S-approximations: Regional version, Izv., Phys. Solid Earth, 2015b, vol. 51, no. 2, pp. 197–206.

    Article  Google Scholar 

  20. Reshetnyak, M.Yu., Inverse problem in Parker’s dynamo, Russ. J. Earth Sci., 2015a, vol. 15, Paper ID ES4001. https://doi.org/10.2205/2015ES000558.2015

  21. Reshetnyak, M.Yu., Spatial spectra of the geomagnetic field in the observations and geodynamo models, Izv., Phys. Solid Earth, 2015b, vol. 51, no. 3, pp. 354–361.

    Article  Google Scholar 

  22. Rodnikov, A.G., Zabarinskaya, L.P., Rashidov, V.A., and Sergeeva, N.A., Geodinamicheskie modeli glubinnogo stroeniya regionov prirodnykh katastrof aktivnykh kontinental’nykh okrain (Geodynamical Models of the Deep Structure beneath the Natural Disaster Regions of Active Continental Margins), Moscow: Nauchn. mir, 2014.

  23. Salnikov, A.M., Batov, A.V., Gudkova, T.V., and Stepanova, I.E., Analysis of the magnetic field data of Mars, The Eleventh Moscow Solar System Symposium (11M-S 3 ), Moscow, 2020. https://doi.org/10.21046/11MS3-2020

  24. Salnikov, A., Stepanova, I., Gudkova, T., and Batov, A., Analytical modeling of the magnetic field of Mars from satellite data using modified S-approximations, Dokl. Earth Sci., 2021, vol. 499, pp. 575–579.

    Article  Google Scholar 

  25. Schattner, U., Segev, A., Mikhailov, V., et al., Magnetic signature of the Kinneret–Kinarot Tectonic Basin along the Dead Sea transform, Northern Israel, Pure Appl. Geophys., 2019, vol. 176, no. 10, pp. 4383–4399.

    Article  Google Scholar 

  26. Shimbirev, B.P., Teoriya figury Zemli (Theory of the Figure of the Earth), Moscow: Nedra, 1975.

  27. Stepanova, I., On the S-approximation of the Earth’s gravity field, Inverse Probl. Sci. Eng., 2008, vol. 16, no. 15, pp. 547–566.

    Article  Google Scholar 

  28. Stepanova, I.E., On the S-approximation of the Earth’s gravity field: regional version, Inverse Probl. Sci. Eng., 2009, vol. 17, no. 8, pp. 1095–1111.

    Article  Google Scholar 

  29. Stepanova, I.E., Kerimov, I.A., and Yagola, A.G., Approximation approach in various modifications of the method of linear integral representations, Izv., Phys. Solid Earth, 2019, vol. 55, no. 2, pp. 218–231.

    Article  Google Scholar 

  30. Stepanova, I.E., Kerimov, I.A., Raevskiy, D.N., and Shchepetilov, A.V., Improving the methods for processing large data in geophysics and geomorphology based on the modified S- and F-approximations, Izv. Phys. Solid Earth, 2020a, vol. 56, no. 3, pp. 364–378.

    Article  Google Scholar 

  31. Stepanova, I.E., Shchepetilov, A.V., Pogorelov, V.V., and Mikhailov, P.S., Using of structural-parametric approach for building digital elevation and the Earth’s gravity models using analytical S-approximations, Geofiz. Protsessy Biosfera, 2020b, vol. 19, no. 2, pp. 107–116. https://doi.org/10.21455/gpb2020.2-8

    Article  Google Scholar 

  32. Strakhov, V.N. and Stepanova, I.E., S-approximation method and its use in solving gravimetry problems (regional version), Izv., Phys. Solid Earth, 2002, vol. 38, no. 7, pp. 535–544.

    Google Scholar 

  33. Titov, V.V., Stepanov, R.A., and Sokoloff, D.D., Transient regimes of the screw dynamo, J. Exp. Theor. Phys., 2020, vol. 130, no. 2, pp. 287–292.

    Article  Google Scholar 

  34. Uieda, L., Valéria, C.F. Barbosa, and Braitenberg, C., Tesseroids: Forward-modeling gravitational fields in spherical coordinates, Geophysics, 2015, vol. 81, no. 5, pp. F41–F48. https://doi.org/10.1190/geo2015-0204.1

    Article  Google Scholar 

  35. Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1981.

  36. Wang, Y., Lukyanenko, D., and Yagola, A., Magnetic parameters inversion method with full tensor gradient data, Inverse Probl. Imaging, 2019, vol. 13, no. 4, pp. 745–754.

    Article  Google Scholar 

  37. Wang, Y., Kolotov, I., Lukyanenko, D., and Yagola, A., Reconstruction of magnetic susceptibility using full magnetic gradient data, Comput. Math. Math. Phys., 2020a, vol. 60, no. 6, pp.1000–1007.

    Article  Google Scholar 

  38. Wang, Y., Leonov, A., Lukyanenko, D., and Yagola, A., General Tikhonov regularization with applications in geoscience, CSIAM Trans. Appl. Math., 2020b, vol. 1, no. 1, pp. 53–85.

    Article  Google Scholar 

  39. Whaler, K. A. and Purucker, M.E., A spatially continuous magnetization model for Mars, J. Geophys. Res., 2005, vol. 110, no. E9, Paper ID E09001. https://doi.org/10.1029/2004JE002393

  40. Yagola, A.G., Stepanova, I.E., Wang, Y.F., and Titarenko, V.N., Obratnye zadachi i metody ikh resheniya: Prilozheniya k geofizike (Inverse Problems and Methods for Their Solution: Applications to Geophysics), Moscow: Binom, 2014.

Download references

Funding

The work was carried out under the state contract of Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Stepanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, I.E., Shchepetilov, A.V. & Mikhailov, P.S. Analytical Models of Time-Dependent Physical Fields of the Earth: Local Version. Izv., Phys. Solid Earth 59, 120–134 (2023). https://doi.org/10.1134/S1069351322060131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322060131

Keywords:

Navigation