Skip to main content
Log in

Analysis of Current Movements and Deformations of the Earth’s Crust in Fennoscandia from GNSS Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—An analysis of the displacement rates of GNSS points indicates that the values of current deformations gradually decrease from the center of Fennoscandia, which is under tensile conditions, to its periphery. At the northeastern margin of the region, the tensile and shear conditions are replaced by a compression strip extending from Lake Ladoga to the Gulf of Kandalaksha. These features of the deformation field are consistent with the solutions for the focal mechanisms of earthquake sources and can be explained by the fact that the study region is developing as a growing elevation, with its center in the northern Gulf of Bothnia, which is under horizontal northwestward compression from the Mid-Atlantic Ridge. It is shown that most of the seismic generation zones we previously determined are located in the areas of increased values of deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Assinovskaya, B.A. and Ovsov, M.K., Seismotectonic position of the Kaliningrad September 21, 2004, earthquake, Izv., Phys. Solid Earth, 2008, vol. 44, no. 9, pp. 717–727.

    Article  Google Scholar 

  2. Babeshko, V.A., Kalinchuk, V.V., Shestopalov, V.L., and Sheremet’ev, V.M., Technologies of geodynamic monitoring of the Kerch-Taman region and deformations of bridge engineering constructions across the Kerch Strait, Nauka Yuga Ross., 2016, vol. 12, no. 1, pp. 22–31.

    Google Scholar 

  3. Bachmanov, D.M., Kozhurin, A.I., and Trifonov, V.G., Database of active faults in Eurasia, Geodin. Tektonofiz., 2017, vol. 8, no. 4, pp. 711–736.

    Article  Google Scholar 

  4. Belousov, V.V. and Gzovskii, M.V., Experimetal’naya tektonika (Experimental Tectonics), Moscow: Nedra, 1964.

  5. Blewitt, G., Hammond, W.C., and Kreemer, C., Harnessing the GPS data explosion for interdisciplinary science, EOS Trans. AGU, 2018, vol. 99.

  6. Database of Active Faults in Eurasia (and adjacent water areas). http://neotec.ginras.ru/database.html#DB_Guide. Cited September 1, 2021.

  7. Delaunay, B.N., On emptiness of sphere, Izv. Akad. Nauk SSSR, Ser. 7: Otd. Mat. Estestv. Nauk, 1934, no. 4, pp. 793–800.

  8. Earthquake Catalog of the U.S. Geological Survey. https://earthquake.usgs.gov/. Cited September 1, 2021a.

  9. Earthquake Catalog of the Federal Research Centre “Geophysical Survey of the Russian Academy of Sciences.” http://www.ceme.gsras.ru/cgi-bin/new/catalog.pl. Cited September 1, 2021b.

  10. Earthquake Catalog of the University of Helsinki. http://www.seismo.helsinki.fi/english. Cited September 1, 2021c.

  11. GNSS Time Series. https://sideshow.jpl.nasa.gov/post/series.html. Cited February 1, 2022.

  12. International Seismological Centre Bulletin: Focal mechanism search. http://www.isc.ac.uk/iscbulletin/search/ fmechanisms/. Cited September 1, 2021.

  13. Keiding, M., Kreemer, C., Lindholm, C.D., Gradmann, S., Olesen, O., and Kierulf, H.P., A comparision of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment, Geophys. J. Int., 2015, vol. 202, no. 2, pp. 1021–1028.

  14. Kierulf, H.P., Steffen, H., Simpson, M.J.R., Lidberg, M., Wu, P., and Wang, H., A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models, J. Geophys. Res.: Solid Earth, 2014, vol. 119, no.8, pp. 6613–6629.

    Article  Google Scholar 

  15. Lukk, A.A., Leonova, V.G., and Sidorin, A.Ya., Revisiting the origin of seismicity in Fennoscandia, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 7, pp. 743–758.

    Article  Google Scholar 

  16. Makarova, N.V., Makeev, V.M., Dorozhko, A.L., Sukhanova, T.V., and Korobova, I.V., Geodynamic systems and geodynamically active zones of the East European platform, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2016, vol. 91, no. 4–5, pp. 9–26.

    Google Scholar 

  17. Rebetskii, Yu.L., Sim, L.A., and Marinin, A.V., Ot zerkal skol’zheniya k tektonicheskim napryazheniyam. Metodiki i algoritmy (From Slickensides to Tectonic Stresses: Methods and Algorithms), Leonov, Yu.G., Ed., Moscow: GEOS, 2017.

    Google Scholar 

  18. RGS Centre. https://rgs-centre.ru/. Cited September 1, 2021.

  19. Rikitake, T., Earthquake Prediction, New York: Elsevier, 1976.

    Google Scholar 

  20. Safety Guide for the Use of Nuclear Energy: Assessment of Region’s Initial Seismicity and Siting of Nuclear Facilities in Engineering Surveys and Research (RB-019-18). https://docs.secnrs.ru/documents/rbs/PБ-019-18/PБ-019-18.pdf. Cited February 7, 2022.

  21. Sentsov, A.A. and Agibalov, A.O., The identification of seismic generation zones using seismicity analysis and computer modeling of neogeodynamics, Moscow Univ. Geol. Bull., 2021, vol.76, no. 2, pp. 121–128.

    Article  Google Scholar 

  22. Turcotte, D.L. and Schubert, J., Geodynamics: Applications of Continuum Physics to Geological Problems, Part 1, New York: Wiley, 1982.

    Google Scholar 

  23. Usoltseva, O. and Kozlovskaya, E., Studying local earthquakes in the area Baltic-Bothnia Megashear using the data of the POLENET/LAPNET temporary array, Solid Earth, 2016, vol. 7, no. 4, pp. 1095–1108.

    Article  Google Scholar 

  24. Voronoi, G.F., Nouvelles applications des paramètres continus à la théorie de formes quadratiques, Journal für die reine und angewandte Mathematik, 1908, vol. 134, pp. 198–287.

    Article  Google Scholar 

  25. Wiejacz, P., The Kaliningrad earthquakes of September 21, 2004, Acta Geodyn. Geomater., 2006, vol. 3, no. 2, pp. 7–16.

    Google Scholar 

  26. Zubovich, A.V. and Mukhamediev, Sh.A., A method of superimposed triangulations for calculation of velocity gradient of horizontal movements: application to the Central Asian GPS network, Geodin. Tektonofiz., 2010, vol. 1, no. 2, pp. 169–185.

    Article  Google Scholar 

  27. Zykov, D.S. and Poleshchuk, A.V., Interaction of geodynamic systems of East European platform in recent times, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2016, vol. 91, no. 1, pp. 3–14.

    Google Scholar 

Download references

Funding

The study was carried out as part of the State Assignment to the Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Steblov, A. O. Agibalov, G. E. Mel’nik, V. P. Perederin, F. V. Perederin or A. A. Sentsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steblov, G.M., Agibalov, A.O., Mel’nik, G.E. et al. Analysis of Current Movements and Deformations of the Earth’s Crust in Fennoscandia from GNSS Data. Izv., Phys. Solid Earth 58, 459–468 (2022). https://doi.org/10.1134/S1069351322040127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322040127

Keywords:

Navigation