Skip to main content
Log in

Method for the Inverse Problem Solution for Reconstruction of Stress Strain State of Rock Mass Based on Natural Fractures Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The paper is devoted to the problem of reconstructing stress state of the rock mass using data on natural fractures. A particular problem of reconstructing stress profiles along the well trajectory from data on spatial orientations and activity of natural fractures in well surrounding rock masses is considered. An approach for estimation of tectonic stresses from these data developed in the previous studies is considered with regard to the specifics of inverse problem solution. An optimization problem emerging during stress reconstruction procedure is stated and various methods of its solution are analyzed. Four different ways to define the objective functions measuring the degree of agreement between real and modeled fractures properties which can be used to reconstruct stresses based on natural fractures related data. The effect of objective function definition on the inverse problem solution is studied in a comparative way. To do that, a synthetic fracture model is constructed; the problem of rock mass stress state reconstruction is stated and solved for the synthetic model using different objective functions. It is revealed that variation of objective function used in practice for stress state reconstruction from natural fractures data leads both to alteration of the obtained solution for the inverse problem and solution uniqueness and stability with regard to worsening of the input data. The paper presents certain conclusions related to the suggestions on choosing a particular objective function for inverse problem solution depending on presence and quality of data related to natural fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E., and Giorgioni, M., From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir, Tectonophysics, 2010, vol. 490, no. 3–4, pp. 197–213. https://doi.org/10.1016/j.tecto.2010.05.005

    Article  Google Scholar 

  2. Aguilera, R., Naturally Fractured Reservoirs, 2nd ed., Tulsa: Penn Well Publishing, 1995.

    Google Scholar 

  3. Barton, C.A., Zoback, M.D., and Moos, D., Fluid flow along potentially active faults in crystalline rocks, Geology, 1995, vol. 23, no. 8, pp. 683–686. https://doi.org/10.1130/0091-7613(1995)023%3C0683:FFAPAF%3E2.3.CO;2

    Article  Google Scholar 

  4. Barton, C.A., Moos, D., Hartley, L., Baxter, S., Foulquier, L., Holl, H., and Hogarth, R., Geomechanically coupled simulation of flow in fractured reservoirs, Proc. 38th Workshop on Geothermal Engineering, Stanford, 2013.

  5. Davidson, J., Siratovich, P.A., Wallis, I.C., Gravley, D.M., and McNamara, D.D., Quantifying the stress distribution at the Rotokawa Geothermal Field, New Zealand, Proc. 34th New Zealand Geothermal Workshop, Auckland, 2012.

  6. Dubinya, N.V., An overview of wellbore methods of investigating stress state of the upper layers of the Earth’s crust, Izv., Phys. Solid Earth, 2019a, vol. 55, no. 2, pp. 311–326. https://doi.org/10.31857/S0002-333720192137-155

    Article  Google Scholar 

  7. Dubinya, N.V., Stress state estimation based on local variations of effective elastic moduli caused by presence of critically stressed fractures, Proc. 53rd US Rock Mechanics/Geomechanics Symp., New York, 2019b, Paper ID ARMA-2019-0139.

  8. Dubinya, N.V. and Ezhov, K.A., In-situ horizontal stress estimation based on the geometrical properties of fractures in well vicinity, Geophys. Res., 2017, vol. 18, no. 2, pp. 5–26. https://doi.org/10.21455/gr2017.2-1

    Article  Google Scholar 

  9. Dubinya, N., Bayuk, I., Tikhotskiy, S., and Rusina, O., Localization and characterization of hydraulically conductive fractured zones at seismic scale with the help of Geomecha, Proc. 80th EAGE Conf. and Exhibition, 2018, vol. 2018, pp. 1–5. https://doi.org/10.3997/2214-4609.201800722

  10. Ezhov, K.A., Arsibekov, A.A., and Dubinya, N.V., Application of special well logging techniques for geomechanical model improvement in naturally fractured reservoirs, Proc. SPE Rus. Petroleum Technolog. Conf., Moscow, 2017, Paper ID SPE-187821-MS.

  11. Fisher, R.A., Dispersion on a sphere, Proc. R. Soc. A, 1953, vol. 217, no. 1130, pp. 295–305. https://doi.org/10.1098/rspa.1953.0064

    Article  Google Scholar 

  12. Fisher, Q.J. and Knipe, R.J., Fault sealing processes in siliciclastic sediments, Spec. Publ.—Geol. Soc. London, 1998, vol. 147, no. 1, pp. 117–134. https://doi.org/10.1144/GSL.SP.1998.147.01.08

    Article  Google Scholar 

  13. Fisher, Q.J., Casey, M., Harris, S.D., and Knipe, R.J., Fluid-flow properties of faults in sandstone: the importance of temperature history, Geology, 2003, vol. 31, no. 11, pp. 965–968. https://doi.org/10.1130/G19823.1

    Article  Google Scholar 

  14. Funato, A. and Chen, Q., Initial stress evaluation by boring core deformation method, Proc. 34th Symp. on Rock Mechanics, Wisconsin, 2005, pp. 261–266.

  15. Gaarenstroom, L., Tromp, R.A.J., de Jong M.C., and Brandenburg, A.M., Overpressures in the Central North Sea: implications for trap integrity and drilling safety, Geol. Soc., London, Pet. Geol. Conf. Ser., 1993, vol. 4, no. 1, pp. 1305–1313. https://doi.org/10.1144/0041305

    Article  Google Scholar 

  16. Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and WSM Collab.(2016), World Stress Map Database Release 2016, GFZ Data Services. https://doi.org/10.5880/WSM.2016.001

  17. Hickman, S., Barton, C.A., Zoback, M., Morin, R., Sass, J., and Benoit, R., In-situ stress and fracture permeability in a fault-hosted geothermal reservoir at Dixie Valley, Nevada, Trans.—Geotherm. Resour. Counc., 1997, vol. 21, pp. 181–189.

    Google Scholar 

  18. Ito, T. and Zoback, M.D., Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole, Geophys. Res. Lett., 2000, vol. 27, no. 7, pp. 1045–1048. https://doi.org/10.1029/1999GL011068

    Article  Google Scholar 

  19. Ito, T., Fujii, R., Evans, K.F., and Hayashi, K., Estimation of stress profile with depth from analysis of temperature and fracture orientation logs in a 3.6 km deep well at Soultz, France, Proc. SPE/ISRM Rock Mechanics Conf., Irving, 2002, Paper ID 78185-MS. https://doi.org/10.2118/78185-MS

  20. Ito, T., Funato, A., Lin, W., Doan, M.L., Boutt, D.F., Kano, Y., Ito, H., Saffer, D., McNeill, L.C., Byrne, T., and Moe, K.T., Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis: a case study in the IODP Expedition 319, J. Geophys. Res.: Solid Earth, 2013, vol. 118, no. 3, pp. 1203–1215. https://doi.org/10.1002/jgrb.50086

    Article  Google Scholar 

  21. Ito, T., Fukusawa, S., Funato, A., Tamagawa, T., and Tezuka, K., A new method of stress measurement based on elastic deformation of sidewall-core with stress relief during coring, Proc. 52nd U.S. Rock Mechanics/Geomechanics Symp., Seattle, 2018, Paper ID 18-672.

  22. Jaeger, J.C., Cook, N.G.W., and Zimmermann, R.W., Fundamentals of Rock Mechanics, Oxford: Blackwell, 2007.

    Google Scholar 

  23. Kissling, W.M., Ellis, S.E., McNamara, D.D., and Massiot, C., Modelling fluid flow through fractured rock: examples using TVZ geothermal reservoirs, Proc. 37th New Zealand Geothermal Workshop, Taupo, 2015.

  24. Latham, J.P., Xiang, J., Belayneh, M., Nick, H.M., Tsang, C.F., and Blunt, M.J., Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures, Int. J. Rock Mech. Mining Sci., 2013, vol. 57, pp. 100–112. https://doi.org/10.1016/j.ijrmms.2012.08.002

    Article  Google Scholar 

  25. Laubach, S.E., Olson, J.E., and Gale, J.F.W., Are open fractures necessarily aligned with maximum horizontal stress?, Earth Planet. Sci. Lett., 2004, vol. 222, pp. 191–195. https://doi.org/10.1016/j.epsl.2004.02.019

    Article  Google Scholar 

  26. Ligtenberg, J.H., Detection of fluid migration pathways in seismic data: implications for fault seal analysis, Basin Res., 2005, vol. 17, pp. 141–153. https://doi.org/10.1111/j.1365-2117.2005.00258.x

    Article  Google Scholar 

  27. Ljunggren, C., Chang, Y., Janson, T., and Christiansson, R., An overview of rock stress measurement methods, Int. J. Rock Mech. Mining Sci., 2003, vol. 40, no. 7, pp. 975–989. https://doi.org/10.1016/j.ijrmms.2003.07.003

    Article  Google Scholar 

  28. Min, K.B., Rutqvist, J., Tsang, C.F., and Jing, L., Stress dependent permeability of fractured rock masses: a numerical study, Int. J. Rock Mech. Mining Sci., 2004, vol. 41, pp. 1191–210. https://doi.org/10.1016/j.ijrmms.2004.05.005

    Article  Google Scholar 

  29. Neuman, S.P., Trends, prospects and challenges in quantifying flow and transport through fractured rocks, Hydrogeol. J., 2005, vol. 13, pp. 124–147. https://doi.org/10.1007/s10040-004-0397-2

    Article  Google Scholar 

  30. Pistre, V., Yan, G.R., Sinha, B., Prioul, R., and Vidal-Gilbert, S., Determining stress regime and Q factor from sonic data, Proc. SPWLA 50th Annual Logging Symp., The Woodlands, 2009, Paper ID 2009-23344.

  31. Raaen, A.M., Horsrud, P., Kjorholt, H., and Okland, D., Improved routine estimation of the minimum horizontal stress component from extended leak-off tests, Int. J. Rock Mech. Mining Sci., vol. 43, pp. 37–48. https://doi.org/10.1016/j.ijrmms.2005.04.005

  32. Rogers, S., Critical stress-related permeability in fractured rocks. Fracture and in situ stress characterization of hydrocarbon reservoirs, Spec. Publ.—Geol. Soc. Lond., 2002, vol. 209, pp. 7–16. https://doi.org/10.1144/GSL.SP.2003.209.01.02

    Article  Google Scholar 

  33. Rutqvist, J. and Stephansson, O., The role of hydromechanical coupling in fractured rock engineering, Hydrogeol. J., 2003, vol. 11, pp. 7–40. https://doi.org/10.1007/s10040-002-0241-5

    Article  Google Scholar 

  34. Sathar, S., Reeves, H.J., Cuss, R.J., and Harrington, J.F., The role of stress history on the flow of fluids through fractures, Mineral. Mag., 2012, vol. 76, no. 8, pp. 3165–3177. https://doi.org/10.1180/minmag.2012.076.8.30

    Article  Google Scholar 

  35. Sayers, C., Stress-induced fluid flow anisotropy in fractured rock, Transp. Porous Media, 1990, vol. 5, pp. 287–297. https://doi.org/10.1007/BF00140017

    Article  Google Scholar 

  36. Silva, I., Domingos, F., Marinho, P., Laronga, R., and Khan, S., Advanced borehole image applications in turbidite reservoirs drilled with oil based mud: a case study from deep offshore Angola, SPWLA 44th Annual Logging Symp., 2003, Paper ID SPWLA-2003-AA.

  37. Sinha, B.K., Wang, J., Kisra, S., Li, J., Pistre, V., Bratton, T., Sanders, M., and Jun, C., Estimation of formation stresses using borehole sonic data, Proc. 49th Ann. Logging Symp., Austin, 2008, Paper ID SPWLA-2008-F.

  38. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving All-Posed Problems), Moscow: Nauka, 1979.

  39. Townend, J. and Zoback, M.D., How faulting keeps the crust strong, Geology, 2000, vol. 28, no. 5, pp. 399–402. https://doi.org/10.1130/0091-7613(2000)28%3C399:HFKTCS%3E2.0.CO;2

    Article  Google Scholar 

  40. Wilbur, C. and Amadei, B., Flow pump measurement of fracture transmissivity as a function of normal stress, in Rock Mechanics Contributions and Challenges, Hustrulid, W.A. and Johnson, G.A., Eds., Rotterdam: Balkema, 1990, pp. 621–627.

    Google Scholar 

  41. Zhang, J., Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes, Int. J. Rock Mech. Mining Sci., 2013, vol. 60, pp. 160–170. https://doi.org/10.1016/j.ijrmms.2012.12.025

    Article  Google Scholar 

  42. Zhang, X., Koutsabeloulis, N.C., and Heffer, K., Hydromechanical modelling of critically stressed and faulted reservoirs, Am. Assoc. Pet. Geol. Bull., 2007, vol. 91, no. 1, pp. 31–50. https://doi.org/10.1306/08030605136

    Article  Google Scholar 

  43. Zoback, M.D., Mastin, L., and Barton, C., In-situ stress measurements in deep boreholes using hydraulic fracturing, wellbore breakouts, and Stonely wave polarization, Proc. Int. Soc. Rock Mech.(ISRM) Int. Symp., Stockholm, 1986, Paper ID ISRM-IS-1986-030.

  44. Zoback, M.D., Barton, C.A., Brudy, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R., Moos, D.B., Peska, P., Ward, C.D., and Wiprut, D.J., Determination of stress orientation and magnitude in deep wells, Int. J. Rock Mech. Mining Sci., 2003, vol. 40, no. 7, pp. 1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001

    Article  Google Scholar 

  45. Zohreh, M., Junin, R., and Jeffreys, P., Evaluate the borehole condition to reduce drilling risk and avoid potential well bore damages by using image logs, J. Pet. Sci. Eng., 2014, vol. 122, pp. 318–330. https://doi.org/10.1016/j.petrol.2014.07.027

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewer who provided the valuable comments that led to considerable increase in quality of the paper.

Funding

The research was performed as part of the State assignment of Schmidt Institute of Physics of the Earth RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Dubinya or S. A. Tikhotskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinya, N.V., Tikhotskiy, S.A. Method for the Inverse Problem Solution for Reconstruction of Stress Strain State of Rock Mass Based on Natural Fractures Data. Izv., Phys. Solid Earth 58, 544–561 (2022). https://doi.org/10.1134/S1069351322040024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322040024

Keywords:

Navigation