Skip to main content
Log in

Modeling Supershear Rupture Propagation on a Fault with Heterogeneous Surface

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The formation of supershear rupture (with a slip front propagation velocity higher than S-wave velocity in the material) along a model fault with homogeneous and heterogeneous surface is analyzed based on the results of numerical simulation. Heterogeneity of the properties is specified by friction spots weakening at shear, interspersed with stable friction segments between them. This problem statement goes back to the well-known asperity model (Kanamori and Stewart, 1978). In this paper, we use seismological and geodetic data to estimate characteristic sizes of the fault-zone segments that are locked during interseismic period. Calculations show that the characteristic sizes of inhomogeneities on the slip plane largely determine the pattern of dynamic rupture propagation. A necessary condition for rupture to pass into supershear is a sufficiently rapid frictional weakening. The observed wavefield features (relatively weak attenuation, an increase in the amplitude of oscillations at some distance from the hypocenter, the predominant motion in the direction parallel to the fault, etc.) do not necessarily need nonlinear medium and are not the result of generation of a “shock wave,” as assumed in some publications, but are only a result of wavefront interference. Interaction between regions with different frictional properties can cause rupture transition to supershear, induce dynamic slip pulses which re-fracture the fault segments previously displaced by the creep process, and slowdown rupture propagation. Judging by the results of calculations, rupture is more likely to accelerate into supershear on rough/undulating segments of contact surfaces with closely spaced frictional weakening zones. At the same time, propagation of such a rupture with a decaying displacement amplitude can be stable on locally smoother segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. https://earthquake.usgs.gov/earthquakes/search/.

REFERENCES

  1. Andrews, D.J., Rupture velocity for plane strain shear cracks, J. Geophys. Res., 1976, vol. 81, no. 32, pp. 5679–5687.

    Article  Google Scholar 

  2. Arkhipov, V.N., Borisov, V.A., Budkov, A.M., et al., Mekhanicheskoe deistvie yadernogo vzryva (Mechanical Action of a Nuclear Explosion), Moscow: Fizmatlit, 2003.

  3. Bao, H., Ampuero, J.-P., Meng, L., Fielding, E.J., Liang, C., Milliner, C.W.D., Feng, T., and Huang, H., Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake, Nat. Geosci., 2019, vol. 12, pp. 200–205. https://doi.org/10.1038/s41561-018-0297-z

    Article  Google Scholar 

  4. Batukhtin, I.V., Budkov, A.M., and Kocharyan, G.G., Rupture nucleation and arrest on faults with a heterogeneous surface, Mater. V Mezhdun. konf. “Triggernye effekty v geosistemakh” (Proc. V Int. Conf. “Trigger Effects in Geosystems”), Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow, 2019, Moscow: TORUS, 2019, pp. 137–149.

  5. Bhat, H.S., Supershear Earthquakes. Theory. Experimenrs. Observations, Self published, 2020. https://harshasbhat. github.io/files/Bhat2021a.pdf.

  6. Bodin, P. and Horton, S., Source parameters and tectonic implications of aftershocks of the Mw 7.6 Bhuj earthquake of 26 January 2001, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 3, pp. 818–827.

    Article  Google Scholar 

  7. Bouchon, M. and Vallee, M., Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake, Science, 2003, vol. 301, no. 5634, pp. 824–826. https://doi.org/10.1126/science.1086832

    Article  Google Scholar 

  8. Bouchon, M., Bouin, M.P., Karabulut, H., Toksoz, M.N., Dietrich, M., and Rosakis, A.J., How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes, Geophys. Res. Lett., 2001, vol. 28, no. 14, pp. 2723–2726. https://doi.org/ 2001GL013112

  9. Bouchon, M., Karabulut, H., Bouin, M.-P., Schmittbuhl, J., Vallée, M., Archuleta, R., Das, S., Renard, F., and Marsan, D., Faulting characteristics of supershear earthquakes, Tectonophysics, 2010, vol. 493, pp. 244–253. https://doi.org/10.1016/j.tecto.2010. 06.011

  10. Brace, W.F. and Byerlee, J.D., Stick-slip as a mechanism for earthquakes, Science, 1966, vol. 153, no. 3739, pp. 990–992.

    Article  Google Scholar 

  11. Bruhat, L., Fang, Z., and Dunham, E.M., Rupture complexity and the supershear transition on rough faults, J. Geophys. Res.: Solid Earth, 2016, vol. 121, pp. 210–224. https://doi.org/10.1002/2015JB012512

    Article  Google Scholar 

  12. Burridge, R., Admissible speeds for plane-strain self-similar shear cracks with friction but lacking cohesion, Geophys. J. Int., 1973, vol. 35, no. 4, pp. 439–455.

    Article  Google Scholar 

  13. Chen, X., Carpenter, B.M., and Reches, Z., Asperity failure control of stick-slip along brittle faults, Pure Appl. Geophys., 2020, vol. 177, pp. 3225–3242. https://doi.org/10.1007/s00024-020-02434-y

    Article  Google Scholar 

  14. Chinnery, M.A., The strength of the Earth’s crust under horizontal shear stress, J. Geophys. Res., 1964, vol. 69, pp. 2085–2089.

    Article  Google Scholar 

  15. Chouneta, A., Valléea, M., Causseb, M., and Courboulex, F., Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity, Tectonophysics, 2018, vol. 733, no. 9, pp. 148–158. https://doi.org/10.1016/j.tecto.2017.11.005

    Article  Google Scholar 

  16. Das, S., Supershear earthquake ruptures-theory, methods, laboratory experiments and fault superhighways: an update, in Perspectives on European Earthquake Engineering and Seismology, vol. 2, Ansal, A., Ed., Cham: Springer, 2015, pp. 1–20. https://doi.org/10.1007/978-3-319-16964-4\_1

  17. Dunham, E.M. and Archuleta, R.J., Evidence for a supershear transient during the 2002 Denali fault earthquake, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 6, pp. S256–S268. https://doi.org/10.1785/0120040616

    Article  Google Scholar 

  18. Ellsworth, W.L., Celebi, M., Evans, J.R., Jensen, E.G., Kayen, R., Metz, M.C., Nyman, D.J., Roddick, J.W., Spudich, P., and Stephens, C.D., Near-field ground motion of the 2002 Denali fault, Alaska, earthquake recorded at pump station 10, Earthquake Spectra, 2004, vol. 20, pp. 597–615. https://doi.org/10.1193/1.1778172

    Article  Google Scholar 

  19. Haeussler, P.J., Schwartz, D.P., Dawson, T., Stenner, H., Lienkaemper, J., Sherrod, B., Cinti, F., Montone, P., Craw, P., Crone, A., and Personius, S.F., Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska, Bull. Seismol. Soc. Am., 2004, vol. 94, pp. S23–S52. https://doi.org/10.1785/0120040626

    Article  Google Scholar 

  20. Ikari, M.J., Marone, C., Saffer, D.M., and Kopf, A.J., Slip weakening as a mechanism for slow earthquakes, Nat. Geosci., 2013, vol. 6, pp. 468–472. https://doi.org/10.1038/NGEO18198

    Article  Google Scholar 

  21. Ji, C., Wald, D.J., and Helmberger, D.V., Source description of the 1999 Hector Mine, California earthquake, Part I: Wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 2002, vol. 92, no. 4, pp. 1192–1207.

    Article  Google Scholar 

  22. Ji, C., Helmberger, D.V., Wald, D.J., and Ma, K.F., Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys Res., 2003, vol. 108, no. B9, Paper ID 2412.

  23. Kanamori, H. and Stewart, G.S., Seismological aspects of the Guatemala earthquake of February 4, 1976, J. Geophys. Res., 1978, vol. 83, no. B7, pp. 3427–3434.

    Article  Google Scholar 

  24. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

  25. Kocharyan, G.G. and Kishkina, S.B., The physical mesomechanics of the earthquake source, Phys. Mesomech., 2021, vol. 24, no. 4, pp. 343–356. https://doi.org/10.1134/S1029959921040019

    Article  Google Scholar 

  26. Kocharyan, G.G. and Ostapchuk, A.A., The influence of viscosity of thin fluid films on the frictional interaction mechanism of rock blocks, Dokl. Earth Sci., 2015, vol. 463, no. 1, pp. 757–759.

    Article  Google Scholar 

  27. Kocharyan G.G. and Ostapchuk, A.A., Mesostructure of tectonic fault slip zone, Fiz. Mezomekh., (in press).

  28. Liu, C., Bizzarri, A., and Das, S., Progression of spontaneous in-plane shear faults from sub-Rayleigh to compressional wave rupture speeds, J. Geophys. Res., 2014, vol. 119, pp. 8331–8345. https://doi.org/10.1002/2014JB011187

    Article  Google Scholar 

  29. Matsuzawa, T., Igarashi, T., and Hasegawa, A., Characteristic small-earthquake sequence off Sanriku, Northeastern Honshu, Japan, Geohpys. Res. Lett., 2002, vol. 29, no. 11, Paper ID 1543. https://doi.org/10.1029/2001GL014632

  30. Metois, M., Vigny, C., and Socquet, A., Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18° S), Pure Appl. Geophys., 2017, vol. 173, no. 5, pp. 1431–1449. https://doi.org/10.1007/s00024-016-1280-5

    Article  Google Scholar 

  31. Mikhailov, V.O., Timoshkina, E.P., Smirnov, V.B., Khairetdinov, S.A., and Dmitriev, P.N., On the origin of postseismic deformation processes in the region of the Maule, Chile earthquake of February 27, 2010, Izv., Phys. Solid Earth, 2020, vol. 56, no. 6, pp. 762–771.

    Article  Google Scholar 

  32. Moore, D.E. and Lockner, D.A., Friction of the smectite clay montmorillonite: A review and interpretation of data, in The Seismogenic Zone of Subduction Thrust Faults, Dixon, T.H. and Moore, J.C., Eds., New York: Columbia Univ. Press, 2007, pp. 317–345. http://cup.columbia.edu/book/the-seismogenic-zone-of-subduction-thrust-faults/9780231138666.

    Google Scholar 

  33. Noda, H., Lapusta, N., and Kanamori, H., Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics, Geophys. J. Int., 2013, vol. 193, no. 3, pp. 1691–1712. https://doi.org/10.1093/gji/ggt074

    Article  Google Scholar 

  34. Okada, T., Matsuzawa, T., and Hasegawa, A., Comparison of source areas of M4.8+ or –0.1 repeating earthquakes off Kamaishi, NE Japan; are asperities persistent features?, Earth Planet. Sci. Lett., 2003, vol. 213, nos. 3–4, pp. 361–374.

    Article  Google Scholar 

  35. Pavlenko, O.V., Shock waves as a possible mechanism of generation of abnormally high accelerations during the M 9.0 Tohoku earthquake on March 11, 2011, Dokl. Earth Sci., 2019, vol. 484, no. 1, pp. 71–75.

    Article  Google Scholar 

  36. Psakhie, S.G., Shilko, E.V., Popov, M.V., and Popov, V.L., Key role of elastic vortices in the initiation of intersonic shear cracks, Phys. Rev. E, 2015, vol. 91, no. 6, Paper ID 063302. https://doi.org/10.1103/PhysRevE.91.063302

  37. Roesner, A., Ikari, M.J., Saffer, D.M., Stanislowski, K., Eijsink, A.M., and Kopf, A.J., Friction experiments under in-situ stress reveal unexpected velocity-weakening in Nankai accretionary prism samples, Earth Planet. Sci. Lett., 2020, vol. 538, Paper ID 116180. https://doi.org/10.1016/j.epsl.2020

  38. Rudenko, O.V. and Makov, Yu.N., Sonic boom: from the physics of nonlinear waves to acoustic ecology (a review), Acoust. Phys., 2021, vol. 67, no. 1, pp. 1–25. https://doi.org/10.31857/S0320791921010032

    Article  Google Scholar 

  39. Scholz, C.H., Paradigms or small change in earthquake mechanics, Ch. 21 of Fault Mechanics and Transport Properties of Rocks: A Festschrift in Honor, vol. 51, Brace, W.F., Evans, B., and Wang, T., Eds., London: Academic Press, 1992, pp. 505–517.

  40. Scholz, C.H., The Mechanics of Earthquakes and Faulting, 3rd ed., Cambridge: Cambridge Univ. Press, 2019.

    Book  Google Scholar 

  41. Shao, G.F., Li, X.Y., Ji, C., and Maeda, T., Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves, Earth, Planets Space, 2011, vol. 63, no. 7, pp. 559–564.

    Article  Google Scholar 

  42. Stefanov, Yu.P., Initiation and propagation of rupture in the fault zone, Fiz. Mezomekh., 2008, vol. 11, no. 1, pp. 94–100.

    Google Scholar 

  43. Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd ed., New York: McGraw-Hill, 1970.

    Google Scholar 

  44. Turcotte, D.L. and Schubert, G., Geodynamics. Application of Continuum Physics to Geological Problems, New York: Wiley, 1982.

    Google Scholar 

  45. Vallée, M. and Dunham, E.M., Observation of far-field Mach waves generated by the 2001 Kokoxili supershear earthquake, Geophys. Res. Lett., 2012, vol. 39, Paper ID L05311. https://doi.org/10.1029/2011GL050725

  46. Zhang, X., Feng, W., Du, H., Li, L., Wang, Sh., Yi, L., and Wang, Y., The 2018 Mw7.5 Papua New Guinea earthquake: A dissipative and cascading rupture process, Geophys. Res. Lett., 2020, vol. 47, no. 17, Paper ID e2020GL089271. https://doi.org/10.1029/2020GL089271

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-27-00565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Kishkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budkov, A.M., Kishkina, S.B. & Kocharyan, G.G. Modeling Supershear Rupture Propagation on a Fault with Heterogeneous Surface. Izv., Phys. Solid Earth 58, 562–575 (2022). https://doi.org/10.1134/S1069351322040012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322040012

Keywords:

Navigation