Skip to main content
Log in

Analytical Models of the Physical Fields of the Earth in Regional Version with Ellipticity

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The regional version of the method of linear integral representations is used to interpret the data on the anomalous physical fields of the Earth. The reconstruction of field elements is reduced to the solution of ill-conditioned systems of linear algebraic equations with an approximate right-hand side. The results of the mathematical experiment on finding analytical continuation of the Earth’s gravity and magnetic fields are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Acuna, M., Connerney, J., Ness, N., Lin, R., Mitchell, D., Carlson, C., McFadden, J., Anderson, K., Reme, H., Mazelle, C., Vignes, D., Wasilewski, P., and Cloutier, P., Global distribution of crustal magnetism discovered by the mars global surveyor MAG/ERExperiment, Science, 1999, vol. 284, pp. 790–793.

    Article  Google Scholar 

  2. Arkani-Hamed, J., An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data, J. Geophys. Res.: Planets, 2002, vol. 107, Paper ID 5083. https://doi.org/10.1029/2001JE001835

  3. Dolgal, A.S. and Bychkov, S.G., Estimation of differences in gravity anomalies for flat and spherical Earth models, Mater. Vseross. konf. mezhdunar. uchastiem “Devyatye nauchn. chteniya Yu.P. Bulashevicha”: Glubinnoe stroenie, geodinamika, teplovoe pole Zemli (Proc. All-Russ. Conf. Int. Participation: The 9th Bulashevich Scientific Readings: Deep Structure, Geodynamics, Thermal Field of the Earth, Interpretation of Geophysical Fields), Yekaterinburg, 2017, Yekaterinburg: IGF UrO RAN, 2017, pp. 169–173.

  4. Dolgal, A.S., Simanov, A.A., and Khokhlova, V.V., Allowance for the Earth’s sphericity in quantitative interpretation of gravity anomalies, Georesursy, 2015, no. 4-2 (63), pp. 56–61.

  5. Gudkova, T.V., Stepanova, I.E., and Batov, A.V., Density anomalies in subsurface layers of Mars: model estimates for the site of the InSight mission seismometer, Sol. Syst. Res., 2020, vol. 54, no. 1, pp. 15–19.

    Article  Google Scholar 

  6. Gudkova, T., Stepanova, I., Batov, A., and Shchepetilov, A., Modified method S- and R-approximations in solving the problems of Mars’s morphology, Inverse Probl. Sci. Eng., 2021, vol. 29, pp. 790–804. https://doi.org/10.1080/17415977.2020.1813125

    Article  Google Scholar 

  7. Krylov, V.I. and Shulgina, L.T., Spravochnaya kniga po chislennomu integrirovaniyu (Reference Book on Numerical Integration), Moscow: Nauka, 1966.

  8. Martyshko, P.S. and Martyshko, M.P., Equations of 3D inverse problems of magnetometry and algorithm of their solution for celestial bodies, Ural. Geofiz. Vestn., 2015, no. 2 (26), pp. 50–53.

  9. Martyshko, P.S., Ladovskiy, I.V., and Byzov, D.D., Stable methods of interpretation of gravimetric data, Dokl. Earth Sci., 2016, vol. 471, no.2, pp. 1319–1322.

    Article  Google Scholar 

  10. Meyer, B, Saltus, R., and Chulliat, A., EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution), Version 3, NOAA National Centers for Environmental Information, 2017. https://doi.org/10.7289/V5H70CVX

    Book  Google Scholar 

  11. Mikhailov, V.O., Timoshkina, E.P., Kiseleva, E.A., Khairetdinov, S.A., Dmitriev, P.N., Kartashov, I.M., and Smirnov, V.B., Problems of the joint inversion of temporal gravity variations with the data on land and seafloor displacements: a case study of the Tohoku-Oki earthquake of March 11, 2011, Izv., Phys. Solid Earth, 2019, vol. 55, no. 5, pp. 746–752.

    Article  Google Scholar 

  12. Pan, L., Quantin, C., Tauzin, B., Michaut, C., Golombek, M., Lognonné, P., Grindrod, P., Langlais, B., Gudkova, T., Stepanova, I., Rodriguez, S., and Lucas, A., Crust heterogeneities and structure at the dichotomy boundary in western Elysium Planitia and implications for InSight lander, Icarus, 2020, vol.338, Paper ID 113511. https://doi.org/10.1016/j.icarus.2019.113511

  13. Pavlenkova, N.I., Yegorova, T.P., Starostenko, V.I., and Kozlenko, V.G., 3D density model of the lithosphere of Europe, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1991, no. 4, pp. 3–23.

  14. Portniaguine, O. and Zhdanov, M., Focusing geophysical inversion images, Geophysics, 1999, vol. 64, no. 3, pp. 874–887.

    Article  Google Scholar 

  15. Portniaguine, O. and Zhdanov, M., 3-D magnetic inversion with data compression and image focusing, Geophysics, 2002, vol. 67, no. 5, pp. 1532–1541.

    Article  Google Scholar 

  16. Raevskiy D.N. and Stepanova, I.E., On the solution of inverse problems of gravimetry by the modified method of S‑approximations, Izv., Phys. Solid Earth, 2015a, vol. 51, no. 2, pp. 207–218.

    Article  Google Scholar 

  17. Raevskiy D.N. and Stepanova, I.E., The modified method of S-approximations: Regional version, Izv., Phys. Solid Earth, 2015b, vol. 51, no. 2, pp. 197–206.

    Article  Google Scholar 

  18. Salnikov, A.M., Batov, A.V., Gudkova, T.V., and Stepanova, I.E., Analysis of the magnetic field data of Mars, Abstr. 11th Moscow Solar System Symp. (11M-S3), Moscow, 2020, Moscow: IKI, 2020, Abstract ID MS-PS-03. https://doi.org/10.21046/11MS3-2020

  19. Salnikov, A., Stepanova, I., Gudkova, T., and Batov, A., Analytical modeling of the magnetic field of Mars from satellite data using modified S-approximations, Dokl. Earth Sci., 2021, vol. 499, pp. 575–579.

    Article  Google Scholar 

  20. Schattner, U., Segev, A., Mikhailov, V., et al., Magnetic signature of the Kinneret–Kinarot Tectonic Basin along the Dead Sea transform, Northern Israel, Pure Appl. Geophys., 2019, vol. 176, no. 10, pp. 4383–4399.

    Article  Google Scholar 

  21. Shimbirev, B.P., Teoriya figury Zemli (Theory of the Figure of the Earth), Moscow: Nedra, 1975.

  22. Stepanova, I., On the S-approximation of the Earth’s gravity field, Inverse Probl. Sci. Eng., 2008, vol. 16, no. 15, pp. 547–566.

    Article  Google Scholar 

  23. Stepanova, I.E., On the S-approximation of the Earth’s gravity field: Regional version, Inverse Probl. Sci. Eng., 2009, vol. 17, no. 8, pp. 1095–1111.

    Article  Google Scholar 

  24. Stepanova, I. and Raevsky, D., On the solution of inverse problems of gravimetry by the modified method of S-approximations, Izv., Phys. Solid Earth, 2015, vol. 51, no. 2, pp. 207–218.

    Article  Google Scholar 

  25. Stepanova, I.E., Raevskiy, D.N., and Shchepetilov, A.V., On the interpretation of large gravimagnetic data by the modified method of S-approximations, Izv., Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 116–129.

    Article  Google Scholar 

  26. Stepanova, I.E., Kerimov, I.A., and Yagola, A.G., Approximation approach in various modifications of the method of linear integral representations, Izv., Phys. Solid Earth, 2019, vol. 55, no. 2, pp. 218–231.

    Article  Google Scholar 

  27. Stepanova, I., Kerimov, I., Raevskiy, D., and Shchepetilov, A., Improving the methods for processing large data in geophysics and geomorphology based on the modified S- and F-approximations, Izv., Phys. Solid Earth, 2020a, vol. 54, no. 3, pp. 364–378.

    Article  Google Scholar 

  28. Stepanova, I.E., Raevskiy, D.N., and Shchepetilov, A.V., Separation of potential fields generated by different sources, Izv., Phys. Solid Earth, 2020b, vol. 56, no. 3, pp. 379–391.

    Article  Google Scholar 

  29. Stepanova, I.E., Shchepetilov, A.V., Pogorelov, V.V., and Mikhailov, P.S., Using of structural-parametric approach for building digital elevation models and Earth’s gravity field using analytical S-approximations, Geofiz. Protsessy Biosfera, 2020c, vol. 19, no. 2, pp. 107–116.

    Google Scholar 

  30. Strakhov, V.N., Geofizika i matematika (Geophysics and Mathematics), Moscow: OIFZ RAN, 1999.

  31. Strakhov, V.N. and Stepanova, I.E., Solution of gravity problems by the S-approximation method (regional version), Izv., Phys. Solid Earth, 2002, vol. 38, no. 7, pp. 535–544.

    Google Scholar 

  32. Uieda, L., Valéria, C.F. Barbosa, and Braitenberg, C., Tesseroids: Forward-modeling gravitational fields in spherical coordinates, Geophysics, 2015, vol. 81, no. 5, pp. F41–F48. https://doi.org/10.1190/geo2015-0204.1

    Article  Google Scholar 

  33. Wang, Y., Lukyanenko, D., and Yagola, A., Magnetic parameters inversion method with full tensor gradient data, Inverse Probl. Imaging, 2019, vol. 13, no. 4, pp. 745–754.

    Article  Google Scholar 

  34. Wang, Y., Kolotov, I., Lukyanenko, D., and Yagola, A., Reconstruction of magnetic susceptibility using full magnetic gradient data, Comput. Math. Math. Phys., 2020a, vol. 60, no. 6, pp. 1000–1007.

    Article  Google Scholar 

  35. Wang, Y., Leonov, A., Lukyanenko, D., and Yagola, A., General Tikhonov regularization with applications in geoscience, CSIAM Trans. Appl. Math., 2020b, vol. 1, no. 1, pp. 53–85.

    Article  Google Scholar 

  36. Yagola, A.G., Stepanova, I.E., Van Yanfey, and Titarenko, V.N., Obratnye zadachi i metody ikh resheniya. Prilozheniya k geofizike (Inverse Problems and Methods for Their Solution. Applications to Geophysics), Moscow: Binom, 2014.

    Google Scholar 

Download references

Funding

The work was carried out in partial fulfillment of the state contract of Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Stepanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, I.E., Shchepetilov, A.V. & Mikhailov, P.S. Analytical Models of the Physical Fields of the Earth in Regional Version with Ellipticity. Izv., Phys. Solid Earth 58, 406–419 (2022). https://doi.org/10.1134/S1069351322030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322030089

Keywords:

Navigation