Skip to main content
Log in

Analysis of Methods for Estimating the Energy of Sources of Acoustic-Gravity Waves in the Earth’s Atmosphere

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—A comparative analysis is presented of the approaches and methods for estimating the energy of the sources of acoustic-gravity waves (AGW) in the Earth’s atmosphere from the records of these waves. A number of known relationships linking the parameters of the recorded infrasonic signals and the source energy are considered. A phenomenological model of the propagation of infrasonic signals from high-yield explosive sources in the stratospheric waveguide is discussed. Based on the model and principle of energy similarity of AGW spectra, a new approach is developed to determine the source energy, in which the key parameter is the dominant frequency of the signal propagating in the atmosphere. It is shown that the source energy estimates obtained by the developed approach agree well with the instrumental data. The errors of AGW source energy estimates obtained by the existing approaches and the new approach are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The energy of explosive-type AGW sources is conventionally described in terms of TNT equivalent and measured in kilotons or megatons of this explosive.

REFERENCES

  1. Adushkin, V.V., Rybnov, Yu.S., and Spivak, A.A., Infrazvuk v atmosfere (Infrasound in the Atmosphere), Moscow: TORUS PRESS, 2020.

    Book  Google Scholar 

  2. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973.

  3. Bush, G.A., Grachev, A.I., Ivanov, E.A., et al., On anomalous propagation of sound in the atmosphere, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1986, vol. 22, no. 1, pp. 91–94.

    Google Scholar 

  4. Ens, T.A., Brown, P.G., Edwards, W.N., and Silber, E.A., Infrasound production by bolides: A global statistical study, J. Atmos. Sol.-Terr. Phys., 2012, vol. 80, pp. 208–229.

    Article  Google Scholar 

  5. Golubev, V.N., Orlov, E.F., and Petukhov, Yu.V., Spectral characteristics of pulsed signals multiply reflected from a layered bottom and surface of the sea, Akust. Zh., 1986, vol. 32, no. 4, pp. 462–467.

    Google Scholar 

  6. Golubev, V.N., Petukhov, Yu.V., and Sharonov, G.A., On the ratio between energy characteristics of different-fold wideband pulsed bottom reflections, Akust. Zh., 1988, vol. 34, no. 3, pp. 453–458.

    Google Scholar 

  7. Gubkin, K.E., Nonlinear geometric acoustics and its applications, in Nekotorye problemy matematiki i mekhaniki (Some Problems of Mathematics and Mechanics), Novosibirsk: Nauka, Sib. Otd., 1961, pp. 69–76.

  8. Gubkin, K.E., On the similarity of an explosion, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1978, no. 10, pp. 49–60.

  9. Hunt, J.N.R., Palmer, R., and Penny, W., Atmospheric waves caused by large explosions, Philos. Trans. R. Soc. London, 1960, vol. 252, no. 1011, pp. 275–315.

    Article  Google Scholar 

  10. Korotkov, P.F., On nonlinear geometric acoustics. Weak shock waves, Prikl. Mekh. Tekh. Fiz., 1964, no. 5, p. 30–37.

  11. Kulichkov, S.N., On the coefficient of reflection of acoustic waves from the upper stratosphere, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1989, vol. 25, no. 7, pp. 688–694.

    Google Scholar 

  12. Kulichkov, S.N., Bush, G.A., Popov, O.E., Raspopov, O.M., Re Velle, D.O., Whitaker, R.W., Avilov, K.V., and Baryshnikov, A.K., On anomalously fast infrasonic arrivals at long distances from surface explosions, Izv., Atmos. Ocean. Phys., 2004, vol. 40, no. 1, pp. 1–9.

    Google Scholar 

  13. Murphy, B.L., Variation Rayligh-wave amplitude with yield and height of burst for intermediate-amplitude nuclear detonations, J. Geophys. Res., 1972, vol. 77, no. 5, pp. 808–817.

    Article  Google Scholar 

  14. Pelinovskii, E.N., Petukhov, Yu.V., and Fridman, V.E., Approximate propagation equations of high-power acoustic signals in the ocean, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1979, vol. 15, no. 4, pp. 436–444.

    Google Scholar 

  15. Petukhov, Yu.V., Teoriya otrazheniya vzryvnykh voln davleniya ot verkhnei tratosfery i formirovanie oblastei anomal’noi slyshimosti (The Theory of Reflection of Blast Pressure Waves from the Upper Stratosphere and Formation of Regions of Anomalous Audibility), Preprint Ser., no. 313, Gor’kii, NIRFI, 1990.

  16. Petukhov, Yu.V., Razin, A.V., Sobisevich, A.L., and Kulikov, V.I., Seismoakusticheskie i akustiko-gravitatsionnye volny v sloistykh sredakh (Seismoacoustic and Acoustic-Gravity Waves in Layered Media), Moscow: IFZ RAN, 2013. https://yadi.sk/i/sYdRCo0TdsJHC

  17. Popova, O.P., Jenniskens, P., Emel’yanenko, V., et al., Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 2013, vol. 342, no. 6162, pp. 1069–1073.

    Article  Google Scholar 

  18. Reed, J.W., Airblast overpressure decay at long ranger, J. Geophys. Res., 1972, vol. 77, no. 9, pp. 1623–1629.

    Article  Google Scholar 

  19. Rybnov, Yu.S., Popova, O.P., and Kharlamov, V.A., Estimation of the energy of the Chelyabinsk bolide from the power spectrum of long-period oscillations in atmospheric pressure, in Sbornik nauchnykh trudov IDG RAN: Dinamicheskie protsessy v geosferakh, vyp. 5 (Collection of Papers IDG RAS: Dynamic Processes in Geospheres, vol. 5), Moscow: GEOS, 2014, pp. 78–85.

  20. Sadovskii, M.A., Mechanical impact of airburst shock waves from an explosion, in Fizika vzryva (Physics of Explosion) vol. 1, Moscow: AN SSSR, 1952, pp. 20–110.

  21. Stevens, J.L., Adams, D.A., Baker, G.E., Xu, H., Murphy, J.R., Divnov, I., and Bourchik, V.N., Infrasound modeling using soviet explosion data and instrument design criteria from experiments and simulations, Tech. Rep., ADA446517S, Fort Belvoir: Defense Threat Reduction Agency, 2006.

    Google Scholar 

  22. Varypaev, A., Volosov, S., Konstantinovskaya, N., Nesterkina, M., Kharlamov, V., and Rybnov, Y., Seismo-acoustic effects of the Lipetsk bolide 21.06.2018, in Trigger Effects in Geosystems, Kocharyan, G. and Lyakhov, A., Eds., Springer Proceedings in Earth and Environmental Sciences Ser., Cham: Springer, 2019, pp. 607–614. https://doi.org/10.1007/978-3-030-31970-0_63

Download references

Funding

The research was carried out under the State contract of IDG RAS with the Ministry of Science and Higher Education of the Russian Federation (project no. АААА-А-19-119021890067-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Rybnov.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybnov, Y.S., Spivak, A.A. & Kharlamov, V.A. Analysis of Methods for Estimating the Energy of Sources of Acoustic-Gravity Waves in the Earth’s Atmosphere. Izv., Phys. Solid Earth 57, 761–767 (2021). https://doi.org/10.1134/S1069351321050189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321050189

Keywords:

Navigation