Skip to main content
Log in

Electrical Conductivity and Fluid Distribution in the Koryak–Kamchatka Region

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The three-dimensional (3D) interpretation of magnetotelluric (MT) data in the Koryak–Kamchatka region with interactive fitting of 3D model MT curves and magnetovariational matrices to their measured analogs is used to construct geoelectric sections of the upper part of the lithosphere. Based on the obtained sections, aqueous fluid fraction and melt fraction in the crust and upper mantle is estimated. Fluid saturation is determined with the allowance for temperature and pressure growth with depth for the rocks saturated with NaCl brine with concentrations 100 or 170 g/L. The degree of fluid mineralization is specified based on the P-wave velocity distributions obtained by deep seismic sounding and tomography. Fluid fraction and mantle melt fraction are estimated from the simplified Shankland–Waff formula (modified Archie’s law). The maximum fluid and melt fractions are characteristic of the lithospheric blocks located within seismically and volcanically most active structures and within regional faults cutting these structures. The blocks with high melt and fluid fraction are spatially correlated with the domains of low P-wave velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Belyavskii, V.V., Popruzhenko, S.V., Egorkin, A.V., Nurmukhamedov, A.G., et al., Deep geological and geophysical studies by seismic (MOVZ) and electricomagnetic methods (MT, DMT, AMT) on Yeisk-Stavropol-Neftekumsk-Caspian Sea (850 line km) and Korf–Verkhnee Penzhino regional profiles (500 line km). Analysis and synthesis of data from deep geophysical studies in the North Caucasus, Kamchatka and southern Siberia, 2006. Rosgeolofond No. 487225. VNIIGeofizika, Funds of the Ministry of Natural Resources of the Russian Federation.

  2. Nurmukhamedov, A.G., Yakovlev, A.G., Belyavsky, V.V. et al., Construction of geological–geophysical model of the deep structure of the Koryak-Kamchatka folded region (Regional ECW–MT control profile “Cape Lopatka—village Khailino”), 2010. Rosgeolofond No. 8394. OAO Kamchatgeologiya. Federal Agency for Mineral Resources (ROSNEDRA).

REFERENCES

  1. Aprelkov, S.E., Ol’shanskaya, O.N., and Ivanova, G.I., Tectonics of Kamchatka, Tikhookean. Geol., 1991, vol. 10, no. 3, pp. 62–74.

    Google Scholar 

  2. Aprelkov, S.E., Dekina, G.I., and Popruzhenko, S.V., Geological structure of the Koryak Plateau and the Penzhina River basin, Tikhookean. Geol., 1997, vol. 16, no. 2, pp. 46–53.

    Google Scholar 

  3. Belyavskii, V.V., Geoelektricheskaya model’ Kamchatsko-Koryakskogo regiona (Geoelectric Model of the Kamchatka-Koryak Region), Saarbrücken: LAP Lambert Acad. Publishing, 2011.

  4. Belyavksii, V.V. and Aleksanova, E.D., Three-dimensional geoelectrical model of southern Kamchatka, Izv. Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 9–31.

    Article  Google Scholar 

  5. Belyavskii, V.V. and Nikolaev, Yu.I., Analysis of observed and model MT fields based on three-dimensional mathematical modeling: Case study of the Verkhnee Penzhino-Korf profile, Izv. Phys. Solid Earth, 2011a, vol. 47, no. 1, pp. 45–58.

    Article  Google Scholar 

  6. Belyavskii, V.V. and Yakovlev, A.G., The 3D profile inversion of the MTS–MVS data by the example of the Shiveluch volcanic zone in the Kamchatka Peninsula, Izv. Phys. Solid Earth, 2011b, vol. 47, no. 1, pp. 57–77.

    Article  Google Scholar 

  7. Belyavskii, V.V. and Yakovlev, A.G., Three-dimensional interpretation of magnetotelluric data on the Kamchatka isthmus, Geofizika, 2020, no. 1, pp. 23–35.

  8. Belyavskii, V.V., Zolotov, E.E., Nurmukhamedov, A.G., Rakitov,V.A., Shpak, I.P., Khrapov, A.V., and Yakovlev, A.G., Seismoelectrical model of the Okhotsko-Chukotsky volcanic belt and the Central Koryak fold basin along the Verkhnee Penzhino-Korf traverse, Geofizika, 2008, no. 2, pp. 30–44.

  9. Brown, G.C. and Mussett, A.E., The Inaccessible Earth, London: Allen and Unwin, 1981.

    Google Scholar 

  10. Caldwell, T.G., Bibby, H.M., and Brown, C., The magnetotelluric phase tensor, Geophys. J. Int., 2004, vol. 158, no. 2, pp. 457–469.

    Article  Google Scholar 

  11. Chebrov, V.N., Abubakirov, I.R., Bogdanov, V.V., et al., Sil’nye Kamchatskie zemletryaseniya 2013 goda (Kamchatka Strong Earthquakes of 2013), Chebrov, V.N., Ed., Petropavlovsk-Kamchatskii: Novaya kniga, 2014.

  12. Counil, J.L., le Mouel, J.L, and Menvielle, M., Associate and conjugate directions concepts in magnetotellurics, Ann. Geophys., 1986, vol. 4B, no. 2, pp. 115–130.

    Google Scholar 

  13. Dobretsov, N.L., Simonov, V.A., Koulakov, I.Yu., and Kotlyarov, A.V., Migration of fluids and melts in subduction zones and general aspects of thermophysical modeling in geology, Russ. Geol. Geophys., 2017, vol. 58, no. 5, pp. 571–585.

    Article  Google Scholar 

  14. Druskin, V. and Knizhnerman, L., Spectral approach to solving three-dimensional Maxwell’s diffusion equations in the time and frequency domains, Radio Sci., 1994, vol. 29, no. 4, pp. 937–953.

    Article  Google Scholar 

  15. Ermakov, V.A., Garagash, I.A., and Gontovaya, I.A., Model of the tectonic and magmatic processes in the Klyuchevskoy group of volcanoes based on geological and geophysical data, Vestn. KRAUNTs, Nauki Zemle, 2014, vol. 24, no. 2, pp. 116–129.

    Google Scholar 

  16. Fedotov, S.A., Magmaticheskie pitayushchie sistemy i mekhanizm izverzhenii vulkanov (Magmatic Feeding Systems and Mechanism of Volcano Eruptions), Moscow: Nauka, 2006.

  17. Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (petrofizika). Spravochnik geofizika (Physical Properties of Rocks and Minerals (Petrophysics). Geophysics Handbook), Dortman, N.V., Ed., Moscow: Nedra, 1984.

    Google Scholar 

  18. Fyfe, W.S., Price, N.J., and Thompson, A.B., Fluids in the Earth’s Crust, Amsterdam: Elsevier, 1978.

    Google Scholar 

  19. Gontovaya, L.I., Zubin, M.I., and Moroz, Yu.F., A deep model of the lithosphere of the Klyuchevskoy group of volcanoes in Kamchatka (based on geophysical data), in Geofizicheskie issledovaniya litosfery (Geophysical Studies of the Lithosphere), Kyiv: Naukova dumka, 1993, pp. 92–105.

  20. Hedenquist, J.W., The ascent of magmatic fluids: Eruption versus mineralization, in Magmas, Fluids and Ore Deposits, Thompson, J.F.H., Ed., Short Course Ser., vol. 23, Victoria: Mineralogical Association of Canada, 1995, pp. 263–289.

  21. Jones, A., Electrical conductivity of the continental lower crust, Ch. 6 of Continental Lower Crust, Fountain, D.M., Arcu1us, R.J., and Kay, R.W., Eds., Geological Survey of Canada Contribution, no. 17492, Amsterdam: Elsevier, 1992, pp. 81–143.

  22. Karakin, A.V., Kur’yanov, Yu.A., and Pavlenkova, N.I., Razlomy, treshchinovatye zony i volnovody v verkhnikh sloyakh zemnoi obolochki (Faults, Fractured Zones and Waveguides in the Upper Layers of the Earth’s Shell), Moscow: VNIIgeosistem, 2003.

  23. Kuzin, A.M., Fluid component in formation of fractured zones and faults, Geol., Geofiz. Razrab. Neft. Gazov. Mestorozhd., 2014, no. 5, pp. 43–50.

  24. Li, S., Unsworth, M.J., Booker, J.R., Wei, W., Tan, H., and Jones, A.G., Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data, Geophys. J. Int., 2003, vol. 153, no. 2, pp. 289–304.

    Article  Google Scholar 

  25. Melikhov, V.R. and Lygin, I.V., Tectonic catastrophes and their role in the Earth’s evolution, Geofizika, 2008, no. 2, pp. 11–19.

  26. Mishin, V.V., Nurmukhamedov, A.G., and Belousov, S.P., Paleosuboceanic type of the Earth’s crust in northeastern Kamchatka, Tikhookean. Geol., 2003, vol. 22, no. 5, pp. 58–72.

    Google Scholar 

  27. Moiseenko, U.I. and Smyslov, A.A., Temperatura zemnykh nedr (Temperature of the Earth’s Interior), Leningrad: Nedra, Leningr. Otd., 1986.

  28. Moroz, Yu.F., Elektroprovodnost’ zemnoi kory i verkhnei mantii Kamchatki (Electrical Conductivity of the Earth’s Crust and Upper Mantle of Kamchatka), Leningrad: Nedra, 1991.

  29. Moroz, Yu.F., Nurmukhamedov, A.G., and Moroz, T.A., A deep geoelectric model of the Petropavlovsk geodynamic research area, Kamchatka, Izv. Phys. Solid Earth, 2001, vol. 37, no. 6, pp. 489–497.

    Google Scholar 

  30. Nurmukhamedov, A.G., Deep structure of the northeastern part of the Koryak-Kamchatka fold area according to geophysical data, Cand. Sci. (Geol.–Mineral.) Dissertation, Irkutsk: Inst. Earth’s Crust SB RAS, 2010.

  31. Pommier, A. and Garnero1, E.J., Petrology-based modeling of mantle melt electrical conductivity and joint interpretation of electrical conductivity and joint interpretation of electromagnetic and seismic results, J. Geophys. Res.: Solid Earth, 2014, vol. 119, no. 5, pp. 4001–4016. https://doi.org/10.1002/2013JB010449

    Article  Google Scholar 

  32. Ringwood, A.E., Composition and Petrology of the Earth’s Mantle, London: McGraw-Hill, 1975.

    Google Scholar 

  33. Shankland, T.I. and Waff, H.S., Partial melting and electrical conductivity anomalie in the upper mantle, J. Geophys. Res., 1977, vol. 82, no. 33, pp. 5409–5417.

    Article  Google Scholar 

  34. Sharapov, N.V., Simbireva, I.G., and Bondarenko, P.M., Struktura i geodinamika seimofokal’noi zony Kurilo-Kamchatskogo regiona (Structure and Geodynamics of the Kuril-Kamchatka Seimofocal Zone), Novosibirsk: Nauka, Sib. Otd., 1984.

  35. Shimojuku, A., Yoshino, T., and Yamazaki, D., Electrical conductivity of brine-bearing quartzite at 1 GPa: implications for fluid content and salinity of the crust, Earth, Planets Space, 2014, vol. 66, artic. 2. http://www.earth-planets-space.com/cohtene/66/1/2

  36. Van’yan, L.L. Elektromagnitnye zondirovaniya (Electromagnetic Sounding), Moscow: Nauchn. mir, 1997.

  37. Varentsov, I.M., A general approach to the magnetotelluric data inversion in a piecewise-continuous medium, Izv. Phys. Solid Earth, 2011, vol. 38, no. 11, pp. 913–934.

    Google Scholar 

  38. Wyllie, M.R.J., Gregory, A.R., and Gardner, L.W., Elastic wave velocities in heterogeneous and porous media, Geophysics, 1956, vol. 21, no. 1, pp. 41–70.

    Article  Google Scholar 

  39. Yoshino, T., Laumonier, M., Mcisaac, E., and Katsura, T., Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle, Earth Planet. Sci. Lett., 2010, vol. 295, nos. 3–4, pp. 593–602.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is based on the material presented in the reports of OAO Kamchatgeologia and VNIIGeofizika. I am grateful to the staff of these organizations for providing these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Belyavskii.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyavskii, V.V. Electrical Conductivity and Fluid Distribution in the Koryak–Kamchatka Region. Izv., Phys. Solid Earth 57, 492–507 (2021). https://doi.org/10.1134/S1069351321040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321040030

Keywords:

Navigation