Skip to main content
Log in

The Relationship between Multifractal and Entropy Properties of Seismic Noise in Kamchatka and Irregularity of the Earth’s Rotation

  • DISCUSSIONS
  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The connection between the properties of seismic noise continuously recorded by the network of 21 broadband seismic stations in Kamchatka during nine years of observations (2011–2019) and the nonuniform rotation of the Earth is studied. The daily time series of median values calculated ​​over all network stations are analyzed for three noise parameters: multifractal singularity spectrum support width, generalized Hurst exponent, and minimum entropy of the distribution of the squared orthogonal wavelet coefficients. For identifying the common components in the variations of these parameters, their adaptive first principal component was calculated in a half-year moving window. The quadratic coherence spectrum between the first principal component of seismic noise characteristics and the time series of the length of the day was calculated in a 182-day moving time window. The time–frequency diagram of the coherence spectrum characterized by a sequence of coherence bursts concentrated in a narrow frequency band with periods from 11 to 14 days is analyzed. The time delays between the coherence bursts and the release of seismic energy in Kamchatka are estimated in a 5-year moving time window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Aivazyan, S.A., Bukhshtaber, V.M., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti (Applied Statistics. Classification and Dimensionality Reduction), Aivazyan, S.A., Ed., Moscow: Finansy i statistika, 1989.

  2. Bendick, R. and Bilham, R., Do weak global stresses synchronize earthquakes?, Geophys. Res. Lett., 2017, vol. 44, pp. 8320–8327. https://doi.org/10.1002/2017GL074934

    Article  Google Scholar 

  3. Chebrov, V.N., Regional seismic monitoring system, Tr. 4 nauchno-tekhn. konf.: Problemy kompleksnogo geofizicheskogo monitoringa Dal’nego Vostoka Rossii (Proc. 4th Sci. Tech. Conf.: Problems of Complex Geophysical Monitoring of the Russian Far East), Petropavlovsk-Kamchatskii, 2013, Obninsk: GS RAN, 2013, pp. 8–15.

  4. Chebrov, V.N., Droznin, D.V., Kugaenko, Yu.A., Levina, V.I., Senyukov, S.L., Sergeev, V.A., Shevchenko, Yu.V., and Yashchuk, V.V., The system of detailed seismological observations in Kamchatka in 2011, J. Volcanol. Seismol., 2013, vol. 7, no. 1, pp. 16–36.

    Article  Google Scholar 

  5. Feder, J., Fractals, New York: Plenum Press, 1988.

    Book  Google Scholar 

  6. Guberman, Sh.A., D-waves, and nonuniformity of the Earth rotation, Dokl. Akad. Nauk SSSR, 1976, vol. 230, no. 4, pp. 811–814.

    Google Scholar 

  7. Jolliffe, I.T., Principal Component Analysis, New York: Springer, 1986. https://doi.org/10.1007/b98835

  8. Kasimova, V.A., Kopylova, G.N., and Lyubushin, A.A., Variations in the parameters of background seismic noise during the preparation stages of strong earthquakes in the Kamchatka region, Izv. Phys. Solid Earth, 2018, vol. 54, no. 2, pp. 269–283.

    Article  Google Scholar 

  9. Levin, B.W., Sasorova, E.V., Steblov, G.M., Domanski, A.V., Prytkov, A.S., and Tsyba, E.N., Variations of the Earth’s rotation rate and cyclic processes in geodynamics, Geod. Geodyn., 2017, no. 8, pp. 206–212. https://doi.org/10.1016/j.geog.2017.03.007

  10. Levitskii, L.S., Rykhlova, L.V., and Sidorenkov, N.S., El Niño southern oscillation and Earth rotation irregularity, Astron. Zh., 1995, vol. 72, no. 2, pp. 272–276.

    Google Scholar 

  11. Lyubushin, A.A., Analiz dannykh sistem geofizicheskogo i ekologicheskogo monitoringa (Data Analysis of Geophysical and Environmental Monitoring Systems), Moscow: Nauka, 2007.

  12. Lyubushin, A.A., Synchronization trends and rhythms of multifractal parameters of the field of low-frequency microseisms, Izv. Phys. Solid Earth, 2009, vol. 45, no. 5, pp. 381–394.

    Article  Google Scholar 

  13. Lyubushin, A.A., Multifractal parameters of low-frequency microseisms, Ch. 15 of Synchronization and Triggering: from Fracture to Earthquake Processes, de Rubeis, V., Czechowski, Z., and Teisseyre, R., Eds., GeoPlanet: Earth and Planet. Sci. Ser., vol. 1, Berlin: Springer, 2010, pp. 253–272. https://doi.org/10.1007/978-3-642-12300-9_15

  14. Lyubushin, A.A., Prognostic properties of low-frequency seismic noise, Nat. Sci., 2012, vol. 4, pp. 659–666. https://doi.org/10.4236/ns.2012.428087

    Article  Google Scholar 

  15. Lyubushin, A.A., How soon would the next mega-earthquake occur in Japan?, Nat. Sci., 2013, no. 5, pp. 1–7. https://doi.org/10.4236/ns.2013.58A1001

  16. Lyubushin, A.A., Analysis of coherence in global seismic noise for 1997–2012, Izv. Phys. Solid Earth, 2014a, vol. 50, no. 3, pp. 325–333.

    Article  Google Scholar 

  17. Lyubushin, A.A., Dynamic estimate of seismic danger based on multifractal properties of low-frequency seismic noise, Nat. Hazards, 2014b, vol. 70, pp. 471–483. https://doi.org/10.1007/s11069-013-0823-7

    Article  Google Scholar 

  18. Lyubushin, A., Synchronization of geophysical fields fluctuations, Ch. 6 of Complexity of Seismic Time Series: Measurement and Applications, Chelidze, T., Telesca, L., and Vallianatos, F., Eds., Amsterdam: Elsevier, 2018, pp. 161–197. https://doi.org/10.1016/B978-0-12-813138-1.00006-7

  19. Lyubushin, A., Connection of seismic noise properties in Japan and California with irregularity of Earth’s rotation, Pure Appl. Geophys., 2020a, vol. 177, pp. 4677–4689. https://doi.org/10.1007/s00024-020-02526-9

    Article  Google Scholar 

  20. Lyubushin, A.A., Seismic noise wavelet-based entropy in Southern California, J. Seismol., 2020b. https://doi.org/10.1007/s10950-020-09950-3

  21. Lyubushin, A.A., Trends of global seismic noise properties in connection to irregularity of Earth’s rotation, Pure Appl. Geophys., 2020c, vol. 177, no. 2. pp. 621–636. https://doi.org/10.1007/s00024-019-02331-z

    Article  Google Scholar 

  22. Lyubushin, A.A., Kopylova, G.N., Kasimova, V.A., and Taranova, L.N., The properties of fields of low frequency noise from the network of broadband seismic stations in Kamchatka, Vestn. KRAUNTs, Nauki Zemle, 2015, no. 2 (26), pp. 20–36. http://www.kscnet.ru/kraesc/2015/2015_26/ art3.pdf.

  23. Mallat, S.A., Wavelet Tour of Signal Processing, 2nd ed., San Diego: Academic Press, 1999.

    Google Scholar 

  24. Marple, S.L., Jr., Digital Spectral Analysis with Applications, Englewood Cliffs: Prentice-Hall, 1987.

    Google Scholar 

  25. Milyukov, V.K., Vinogradov, M.P., Mironov, A.P., Myasnikov, A.V., and Perelygin, N.A., The free oscillations of the Earth excited by three strongest earthquakes of the past decade according to deformation observations, Izv. Phys. Solid Earth, 2015, vol. 51, no. 2, pp. 176–190.

    Article  Google Scholar 

  26. Sasorova, E.V. and Levin, B.W., On the connection of variations of the velocity of the Earth rotation and its seismic activity. The Earth‘s entry into a new phase of reducing of the angular velocity rotation, Vestn. KRAUNTs, Fiz.-mat. nauki, 2017, no. 4(20), pp. 91–100. https://doi.org/10.18454/2079-6641-2017-20-4-91-100

  27. Shanker, D., Kapur, N., and Singh, V., On the spatio temporal distribution of global seismicity and rotation of the Earth – A review, Acta Geod. Geophys. Hung., 2001, vol. 36, pp. 175–187. https://doi.org/10.1556/AGeod.36.2001.2.5

    Article  Google Scholar 

  28. Sidorenkov, N.S., Atmosfernye protsessy i vrashchenie Zemli (Atmospheric Processes and the Rotation of the Earth), St. Petersburg: Gidrometeoizdat, 2002.

  29. Sobolev, G.A., Seismicheskii shum (Seismic Noise), Moscow: Nauka obraz., 2014.

  30. Zotov, L., Sidorenkov, N.S., Bizouard, C., Shum, C.K., and Shen, W., Multichannel singular spectrum analysis of the axial atmospheric angular momentum, Geod. Geodyn., 2017, vol. 8, no. 6, pp. 433–442. https://doi.org/10.1016/j.geog.2017.02.010

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research under project no. 18-05-00133.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Lyubushin, G. N. Kopylova or Yu. K. Serafimova.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubushin, A.A., Kopylova, G.N. & Serafimova, Y.K. The Relationship between Multifractal and Entropy Properties of Seismic Noise in Kamchatka and Irregularity of the Earth’s Rotation. Izv., Phys. Solid Earth 57, 279–288 (2021). https://doi.org/10.1134/S106935132102004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935132102004X

Keywords:

Navigation