Skip to main content
Log in

Effect of Magnetic Storms on Low-Frequency Seismic Noise

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The response of seismic noise in the minute range of periods to the strong magnetic storms is studied. The noise is analyzed from the records by IRIS broadband seismic stations located in the different regions of the world. The minute variations in the X-, Y-, Z-components of the magnetic field at different observatories were obtained through the INTERMAGNET world data system. Seismic pulses that emerged at rapid variations in the rate of change of the magnetic field components dX, dY, dZ are detected. The pulses have the amplitudes of ~2 μm and duration of a few min. The high variability in the ratio of the amplitude of seismic pulses to the magnitude of changes in dHx, dHy, dHz indicates a nonlinear process. The amplitudes of seismic pulses are approximately identical at the stations located in the seismically active or quiet regions. The properties of the pulses also do not depend of weather conditions. The pulses are revealed in the records by all seismic stations located in the continents. In the records from the identical stations located on the volcanic islands in the deep part of the Pacific, such pulses are not detected. It is hypothesized that abrupt changes in the electromagnetic field during a storm act as a trigger for the release of energy accumulated in the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V. and Spivak, A.A., Problems related to the interaction of geospheres and physical fields in near-surface geophysics, Izv. Phys. Solid Earth, 2019, vol. 55, no. 1, pp. 1–11.

    Article  Google Scholar 

  2. Adushkin, V.V., Solov’ev, S.P., and Spivak, A.A., Elektricheskie polya tekhnogennykh i prirodnykh protsessov (Electrical Fields of Man-Made and Natural Processes), Moscow: GEOS, 2019.

  3. Anisimov, S.V. and Shikhova, N.M., Variability of the electric field of an unperturbed atmosphere of middle latitudes, Geofiz. Issled., 2008, vol. 9, no. 3, pp. 25–38.

    Google Scholar 

  4. Antonov, Yu.V., The structure and morphology non-tidal variations of gravity, Geofizika, 2015, no. 1, pp. 67–71.

  5. Chalmers, J.A., Atmospheric Electricity, London: Pergamon Press, 1957.

    Google Scholar 

  6. Chernyak, G.L., On direct and inverse seismoelectric effects in sedimentary rocks upon sinusoidal excitation, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1975, no. 7, pp. 117-121.

  7. Dyad’kov, P.G., Tektonomagnitnyi metod monitoringa napryazhennogo sostoyaniya zemnoy kory i ego ispol’zovanie v Baykal’skom regione i na Altae (Tectonomagnetic Method for Monitoring the Stress State of the Earth’s Ccrust and Its Use in the Baikal Region and Altai), Novosibirsk: INGG SO RAN, 2009.

  8. Ekstrom, G., Time domain analysis of Earth’s long-period background seismic radiation, J. Geophys. Res., 2001, vol. 106, no. B11, pp. 26483–26493.

    Article  Google Scholar 

  9. Fainberg, E.B., Avagimov, A.A., Zeigarnik, V.A, and Vasil’eva, T.A., Generation of heat flows in the Earth’s interior by global geomagnetic storms, Izv. Phys. Solid Earth, 2004, vol. 40, no. 4, pp. 315–322.

    Google Scholar 

  10. Imyanitov, I.M. and Chubarina, E.V., Elektrichestvo svobodnoi atmosfery (Electricity of the free atmosphere), Leningrad: Gidrometeoizdat, 1965.

  11. Ivanov, A.G., Seismoelectric effect of the 2nd kind, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 1940, no. 5, pp. 699–727.

  12. Kolmogorov, A.N., The local structure of turbulence in an incompressible fluid at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, pp. 299–303.

    Google Scholar 

  13. Kuksenko, V.S., Makhmudov, Kh.F., and Ponomarev, A.V., Relaxation of electric fields induced by mechanical loading in natural dielectrics, Phys. Solid State, 1997, vol. 39, no. 7, pp. 1065–1066.

    Article  Google Scholar 

  14. Lyubushin, A.A., Analiz dannykh sistem geofizicheskogo i ekologicheskogo monitoringa (Analysis of Data from Geophysical and Environmental Monitoring Systems), Moscow: Nauka, 2007.

  15. Maibuk, Z.-Yu.Ya., A trigger mechanism of nonlinear mechanoelectric conversions in mineralized faults, Izv. Phys. Solid Earth, 2006, vol. 42, no. 10, pp. 838–849.

    Article  Google Scholar 

  16. Melchior, P.J., The Earth Tides, Oxford: Pergamon Press, 1966.

    Google Scholar 

  17. Migunov, N.I., On the use of seismoelectric phenomena to study the stress state of saturated rocks, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1984, no. 9, pp. 20-28.

  18. Nishida, K., Kobayashi, N., and Fukao, Y., Origin of Earth’s ground noise from 2 to 20 mHz, Geophys. Res. Lett., 2002, vol. 29, no. 10, pp. 52-1−52.4.

  19. Satoshi, I., Beroza, G., Shelly, D., and Uchide, T., A scaling law for slow earthquakes, Nature, 2007, vol. 407/3, pp. 76–79.

    Google Scholar 

  20. Sobolev, G.A., Low-Frequency seismic noise before and after the Sumatra megaearthquake of December 26, 2004, Dokl. Earth Sci., 2019, vol. 485, no. 2, pp. 395–400.

    Article  Google Scholar 

  21. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.

  22. Sobolev, G., Spetzler, H., Koltsov, A., and Chelidze, T., An experimental study of triggered stick-slip, PAGEOPH, 1993, vol. 140, no. 1, pp. 79–94.

    Article  Google Scholar 

  23. Sobolev, G.A., Zakrzhevskaya, N.A., and Kharin, E.P., On the relation between seismicity and magnetic storms, Izv. Phys. Solid Earth, 2001, vol. 37, no. 11, pp. 917–927.

    Google Scholar 

  24. Sobolev, G.A., Zakrzhevskaya, N.A., and Kireenkova, S.M., Asymmetrical seismic pulses before a large earthquake, J. Volcanol. Seismol., 2019, vol. 13, no. 1, pp. 1–6.

    Article  Google Scholar 

  25. Straser, V., Cataldi, G., and Cataldi, D., Solar wind ionic and geomagnetic variations preceding the Md 8.3 Chile earthquake, NCGT Journal, 2015, vol. 3, pp. 394–399.

    Google Scholar 

  26. Svetov, B.S., Osnovy geoelektriki (Fundamentals of Geoelectrics), Moscow: LKI, 2008.

  27. Tanimoto, T., Um, J., Nishida, K., and Kobayashi, N., Earth’s continuous oscillations observed on seismically quiet days, Geophys. Res. Lett., 1998, vol. 25, pp. 1553–1556.

    Article  Google Scholar 

  28. Turbulentnost’, dinamika atmosfery i klimata (Turbulence, Dynamics of the Atmosphere and Climate), Golitsyn, G.S., Mokhov, I.I., and Kulichkov, S.N., Eds., Moscow: GEOS, 2014.

    Google Scholar 

  29. Urata, N., Duma, G., and Freund, F., Geomagnetic Kp index and earthquake, Open J. Earthquake Res., 2018, no. 7, pp. 39–52. https://doi.org/10.4236/ojer.2018.71003

  30. Wieland, E. and Streckeisen, G., The leaf-spring seismometer–design and performance, Bull. Seismol. Soc. Am., 1982, vol. 72, pp. 2349−2367.

    Google Scholar 

  31. Zakrzhevskaya, N.A. and Sobolev, G.A., The effects of magnetic storms with an abrupt start on seismicity in different regions, Vulkanol. Seismol., 2004, no. 3, pp. 63–75.

  32. Zhurkov, S.N., Kinetic concept of the strength of solids, Vestn. Akad. Nauk SSSR, 1968, no. 3, pp. 46–52.

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-05-00026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Sobolev.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, G.A., Zakrzhevskaya, N.A., Migunov, I.N. et al. Effect of Magnetic Storms on Low-Frequency Seismic Noise. Izv., Phys. Solid Earth 56, 291–315 (2020). https://doi.org/10.1134/S106935132003009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935132003009X

Keywords:

Navigation