The History and State-of-the-Art of the Studies of Native Iron in Terrestrial and Extraterrestrial Rocks

Abstract

The history of the studies of native iron in terrestrial rocks and meteorites is briefly reviewed. Numerous data on the distribution, composition, and grain size of metal iron particles in sediments and other terrestrial rocks, as well as in meteorites, obtained by thermomagnetic analysis with heating to 800°C in combination with microprobe analysis are synthesizes and systematized. The studies have shown that the iron particles in all the studied sediments typically have an extraterrestrial origin. Based on the statistical analysis of the thermomagnetic data, a number of indications (statistical regularities) testifying to the overwhelmingly extraterrestrial origin of the iron particles in the sediments are proposed. The similarity of the conditions of the formation of metal iron particles of terrestrial and extraterrestrial origin allow a petromagnetic scheme of the structure of planets to be suggested based on the distribution of metal iron in them.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Antipin, V.S., Kuz’min, M.I., Pecherskii, D.M., Tsel’mo-vich, V.A., and Yazev, S.A., The substance of the Chelyabinsk meteorite: results of geochemical and thermomagnetic studies, Dokl. Earth Sci., 2014, vol. 458, no. 1, pp. 1082–1085.

    Article  Google Scholar 

  2. 2

    Baker, J., Bizzarro, M., Witting, N., Connelly, J., and Haack, H., Early planetesimal melting from an age 4566 Gyr for differentiated meteorites, Nature, 2005, vol. 436, no. is. 7054, pp. 1127–1131.

  3. 3

    Bonvier, A. and Wadhwa, M., The age of the Solar system redefined by the oldest Pb-Pb age of meteoritic inclusion, Nat. Geosci., 2010, vol. 3, pp. 637–641.

    Article  Google Scholar 

  4. 4

    Brownlee, D.E., Cosmic dust: collection and research, Ann. Rev. Earth Planet. Sci., 1985, vol. 13, pp. 147–173.

    Article  Google Scholar 

  5. 5

    Encyclopedia Britannica, Art. Meteorites, 2nd ed., 2012. http://eb.com.

  6. 6

    Evans, M.E., Magnetoclimatology: a test of the wind-vigour model using 1980 Mount St. Hellens ash, Earth. Planet. Sci. Lett., 1999, vol. 172, nos. 3–4, pp. 255–259.

    Article  Google Scholar 

  7. 7

    Fredriksson, K. and Martin, I.R., The origin of black spherules found in the Pacific islands, deep sea sediments, and Antarctic ice, Geochim. Cosmochim. Acta, 1963, vol. 27, pp. 245–248.

    Article  Google Scholar 

  8. 8

    Grachev, A.F., Kollmann, H.A., Korchagin, O.A., et al., The K/T boundary of Gams (Eastern Alps, Austria) and the nature of terminal Cretaceous mass extinction, in Abhandlungen der geologischen bundesanstalt, Grachev, A.F., Ed., 2009, band 63, pp. 89–134.

  9. 9

    Grachev, A.F., Korchagin, O.A., Tselmovich, V.A., and Kollmann, H.A., Cosmic dust and micrometeorites in the transitional clay layer at the Cretaceous–Paleogene boundary in the Gams section (Eastern Alps): morphology and chemical composition, Izv., Phys. Solid Earth, 2008, vol. 44, no. 7, pp. 555–269.

    Article  Google Scholar 

  10. 10

    Grachev, A.F., Pechersky, D.M., Borisovskii, V.A., and Tselmovich, V.A., Magnetic minerals in sediments at the Cretaceous/Paleogene boundary (the Gams section, Eastern Alps), Izv., Phys. Solid Earth, 2008, vol. 44, no. 10, pp. 789–803.

    Article  Google Scholar 

  11. 11

    Hubbard, W.B., Planetary Interiors, New York: Van Nostrand Reinhold, 1984.

    Google Scholar 

  12. 12

    Keller, G., Impact stratigraphy. Old principle, new reality, in The Sedimentary Record of Meteorite Impacts, Evans, K.R., Horton, J.W., King, D.T., and Morrow, J.R., eds., Geol. Soc. America Special paper, 2008, vol. 437, pp. 147–178.

  13. 13

    Lukin, A.E., Native metals and carbides as the markers of the composition of deep geospheres, Geofiz. Zh., 2006, no. 4, pp. 17–46.

  14. 14

    Marakushev, A.A., Granovskii, L.B., and Zinov’eva, N.G., Kosmicheskaya petrologiya (Extraterrestrial Petrology), Moscow: MGU, 1992.

  15. 15

    Markov, G.P., Pechersky, D.M., and Tselmovich, V.A., Magnetic minerals of the Chelyabinsk Meteorite, Sol. Syst. Res., 2015, vol. 49, no. 5, pp. 313–317.

    Article  Google Scholar 

  16. 16

    McFadden, L., Weissman, P.R., and Johnson, T.V., Encyclopedia of the Solar System, San Diego: Academic Press, 2007.

    Google Scholar 

  17. 17

    Murray, S. and Renard, A.F., Report on deep-sea deposits based on the specimens collected during the voyage of H.M.S. Challenger in the years 1872 to 1876, in: Challenger Reports, Edinburgh: HMSO, 1891, vol. 3.

    Google Scholar 

  18. 18

    Nagata, N., Sugiura, N., Fisher, R.M., Schwerer, F.C., Fuller, M.D., and Dunn, J.R., Magnetic properties of Apollo 11-17 lunar materials with special reference to effects of meteorite impact, Proc. Fifth Lunar Conference, 1974, vol. 3, pp. 2827-2839.

  19. 19

    Nagata, T., Ishikawa, Y., and Kinoshita, H., Magnetic properties of Lunar samples, Science, 1970, vol. 167, pp. 703–706.

    Article  Google Scholar 

  20. 20

    Novgorodova, M.I., Kristallokhimiya samorodnykh metallov i prirodnykh intermetallicheskikh soedinenii (Crystal Chemistry of Native Metals and Natural Intermetallic Compounds), Science and Technology Review, Ser. Crystal Chemistry, Moscow: VINITI, 1994, vol. 29.

  21. 21

    Parkin, D.W., Sullivan, R.A.L., and Andrews, J.N. Further studies on cosmic spherules from deep sea sediments. Philos. Trans. R. Soc. London, 1980, vol. 297, pp. 495–518.

    Article  Google Scholar 

  22. 22

    Patterson, C., Age of meteorites and the Earth, Geochim. Cosmochim. Acta, 1956, vol. 10, pp. 230–237.

    Article  Google Scholar 

  23. 23

    Pecherskii, D.M., Enrichment of sediments in iron hydroxides at the Mesozoic–Cenozoic boundary: a synthesis of petromagnetic data, Izv., Phys. Solid Earth, 2008a, vol. 44, no. 3, pp. 232–238.

    Article  Google Scholar 

  24. 24

    Pechersky, D.M., Metallic iron in sediments at the Mesozoic–Cenozoic (K/T) boundary, Russ. J. Earth Sci., 2008b, vol. 10, no. 6, pp. 1–9, ES6006. https://doi.org/10.2205/2005ES000304

  25. 25

    Pechersky, D.M., Iron from space, Zemlya Vselennaya, 2010a, no. 6, pp. 68–75.

  26. 26

    Pechersky, D.M., Metallic iron and nickel in Cretaceous and Cenozoic sediments: the results of thermomagnetic analysis, J. Environ. Prot., 2010b, vol. 1, no. 2, pp. 143–154.

    Article  Google Scholar 

  27. 27

    Pechersky, D.M., Samorodnoe zhelezo i drugie magnitnye mineraly v osadkakh: termomagnitnye priznaki kosmicheskogo proiskhozhdensiya (Native Iron and Other Magnetic Minerals in Sediments: Thermomagnetic Signs of Extraterrestrial Origin), Saarbrücken: Palmarium, 2012.

  28. 28

    Pechersky, D.M., Magnetic minerals from space, Zemlya Vselennaya, 2013, no. 2, pp. 59–70.

  29. 29

    Pechersky, D.M., Microprobe and thermomagnetic study of iron particles in sediments: a synthesis, Eksp. Geokhim., 2015a, vol. 2, no. 1, pp. 103–107.

    Google Scholar 

  30. 30

    Pechersky, D.M., Raspredelenie chastits samorodnogo zheleza i Fe–Ni splavov na planetakh (Particle Distribution of Native Iron and Fe–Ni Alloys on Planets), Saarbrücken: Palmarium Academic Publishing, 2015b.

  31. 31

    Pecherskii, D.M., Abundance of metallic iron on planets, Geofiz. Zh., 2016, no. 5, pp. 13–24.

  32. 32

    Pecherskii, D.M., Distribution of metallic iron in the interior of planets, Zemlya Vselennaya, 2017, no. 6, pp. 82–89.

  33. 33

    Pechersky, D.M. and Didenko, A.N., Paleoaziatskii okean: petromagnitnaya i paleomagnitnaya informatsiya o ego litosfere (Paleo-Asian Ocean: Rock Magnetic and Paleomagnetic Information about Its Lithosphere), Moscow: OIFZ RAN, 1995.

  34. 34

    Pecherskii, D.M. and Kuzina, D.M., Nickel-free iron particles in sediments, Izv., Phys. Solid Earth, 2015, vol. 51, no. 6, pp. 897–909.

    Article  Google Scholar 

  35. 35

    Pechersky, D.M. and Kuzina, D.M., Extraterrestrial metallic iron in the lacustrine, epicontinental and oceanic sediments: a review of thermomagnetic and microprobe analyzes data, J. Geol. Geophys., 2016, vol. 260, https://doi.org/10.4172/2381-8719.1000260

  36. 36

    Pecherskii, D.M. and Sharonova, Z.V., Thermomagnetic evidence of native iron in sediments, Izv., Phys. Solid Earth, 2012, vol. 48, no. 4, pp. 320–325.

    Article  Google Scholar 

  37. 37

    Pechersky, D.M. and Sharonova, Z.V., A relationship between the concentration of native iron particles in sediments and the rate of their accumulation: a synthesis of thermomagnetic data, Izv., Phys. Solid Earth, 2013, vol. 49, no. 5, p. 718–724.

    Article  Google Scholar 

  38. 38

    Pechersky, D.M., Grachev, A.F., Nourgaliev, D.C., Tselmovich, V.A., and Sharonova, Z.V., Magnetolithologic and magnetomineralogical characteristics of deposits at the Mesozoic/Cenozoic boundary: Gams section (Austria), Russ. J. Earth Sci., 2006a, vol. 8, no. 3, ES3001. https://doi.org/10.2205/2006ES000204

    Google Scholar 

  39. 39

    Pecherskii, D.M., Nurgaliev, D.K., and Sharonova, Z.V., Magnetolithologic and magnetomineralogical characteristics of sediments at the Mesozoic/Cenozoic boundary: The Koshak section (Mangyshlak Peninsula), Izv., Phys. Solid Earth, 2006b, vol. 42, no. 11, pp. 957–970.

    Article  Google Scholar 

  40. 40

    Pechersky, D.M., Nurgaliev, D.K., Tsel’movich, V.A., and Sharonova, Z.V., Rock magnetism of Gams sediments, Austria, at Mesozoic/Cenozoic boundary, in Sbornik, posvyashchennyi pamyati L.E. Sholpo “Issledovanie magnitnykh svoistv gornykh porod” (Collection of Papers in Commemoration of L.E. Sholpo “Study of Magnetic Properties of Rocks”), Vladivostok: Dal’nevost. univ., 2006c, pp. 64–75.

  41. 41

    Pechersky, D.M., Grachev, A.F., Nourgaliev, D.K., and Tselmovich, V.A., Magnetomineralogical characteristic of clay layer at the Cretaceous–Paleogenic boundary (Gams section, Eastern Alps, Austria), Geofiz. Issled., 2008a, vol. 9, no. 4, pp. 29–39

    Google Scholar 

  42. 42

    Pechersky, D.M., Grachev, A.F., Nourgaliev, D.K., Tselmovich, V.A., and Sharonova, Z.V., Petromagnetic features of sediments at the Mesozoic–Cenozoic boundary: results from the Gams section, Izv., Phys. Solid Earth, 2008b, vol. 44, no. 5, pp. 401–420.

    Article  Google Scholar 

  43. 43

    Pechersky, D.M., Nurgaliev, D.K., and Trubikhin, V.M., Native iron in Miocene sediments, Russ. J. Earth Sci., 2008c, vol. 10, p. ES6004. https://doi.org/10.2205/2008ES000306

    Google Scholar 

  44. 44

    Pecherskii, D.M., Asanidze, B.Z., Nurgaliev, D.K., and Sharonova, Z.V., Petromagnetic and paleomagnetic characterization of Mesozoic/Cenozoic deposits: the Tetritskaro section (Georgia), Izv., Phys. Solid Earth, 2009a, vol. 45, no. 2, pp. 134–149.

    Article  Google Scholar 

  45. 45

    Pechersky, D.M., Nurgaliev, D.K., and Sharonova, Z.V., Magnetic properties of the boundary layer at the Cretaceous/Tertiary boundary in the Gams section, Eastern Alps, Austria, Izv., Phys. Solid Earth, 2009b, vol. 45, no. 6, pp. 482–494.

    Article  Google Scholar 

  46. 46

    Pechersky, D.M., Nourgaliev, D.K., and Sharonova, Z.V., Magnetic properties of rocks of the Gams section, Chapter 5 in The K/T Boundary of Gams (Eastern Alps, Austria) and the Nature of Terminal Cretaceous Mass Extinction, Grachev, A.F., Ed., Abhandlungen der geologischen bundesanstalt, band 63, 2009c, pp. 89–134.

  47. 47

    Pechersky, D.M., Nurgaliev, D.K., and Fomin, V.A., Cosmic iron in sediments: the results of thermomagnetic analysis, Vestn. Otd. Nauk Zemle RAN, 2010, vol. 2, pp. 185–192, NZ6025. https://doi.org/10.2265/2010NZ000043

  48. 48

    Pechersky, D.M., Nurgaliev, D.K., Fomin, V.A., Sharo-nova, Z.V., and Gil’manova, D.M., Extraterrestrial iron in the Cretaceous–Danian sediments, Izv., Phys. Solid Earth, 2011, vol. 47, no. 5, pp. 379–401

    Article  Google Scholar 

  49. 49

    Pechersky, D.M., Kandinov, M.N., Markov, G.P., Plyashkevich, A.A., and Tselmovich, V.A., Combination of thermomagnetic and microprobe studies of extraterrestrial magnetic minerals: data on the structure and evolution of planets, Issledovano v Rossii, 2012a, pp. 437–452. http://zhurnal.ape.relarn.ru/articles/2012/032.pdf.

  50. 50

    Pechersky, D.M., Kandinov, M.N., Markov, G.P., Plyashkevich, A.A., Tsel’movich, V.A., and Sharonova, Z.V., Magnetic minerals of meteorites, in Nauka i prosveshchenie. Posvyashchaetsya 150-letiyu so dnya rozhdeniya akademika V.I. Vernadskogo (Science and Education. In Commemoration of the 150th Anniversary of the Birth of Academician V.I. Vernadskii), Moscow: GGM, 2012b, pp. 166–185.

  51. 51

    Pechersky, D.M., Markov, G.P., Tsel’movich, V.A., and Sharonova, Z.V., Extraterrestrial magnetic minerals, Izv., Phys. Solid Earth, 2012c, vol. 48, nos. 7–8, pp. 653–670.

    Article  Google Scholar 

  52. 52

    Pechersky, D.M., Gil’manova, D.M., Ivanov, E.V., Kuz’min, M.I., Markov, G.P., Nurgaliev, D.K., and Tsel’movich, V.A., Native iron in the sediments of Lake Baikal (borehole BDP-98): results of thermomagnetic analysis, Rus. Geol. Geophys., 2013a, vol. 54, no. 9, pp. 1045–1055.

    Article  Google Scholar 

  53. 53

    Pecherskii, D.M., Gil’manova, D.M., Markov, G.P., Murdmaa, I.O., Nurgaliev, D.K., Tsel’movich, V.A., and Sharonova, Z.V., Native iron and other magnetic minerals in the sediments of the Northwestern Atlantic: thermomagnetic and microprobe evidence, Izv., Phys. Solid Earth, 2013b, vol. 49, no. 3, pp. 426–448

    Article  Google Scholar 

  54. 54

    Pechersky, D.M., Gil’manova, D.M., Kazansky, A.Yu., Krivonogov, S.K., Nurgaliev, D.K., and Tsel’movich, V.A., Native iron in Quaternary deposits of the Darhad Basin (northern Mongolia), Russ. Geol. Geophys., 2013c, vol. 54, no. 12, pp. 1499–1514.

    Article  Google Scholar 

  55. 55

    Pechersky, D.M., Kuzina, D.M., Nurgaliev, D.K., and Tsel’movich, V.A., The common nature of native iron in terrestrial rocks and meteorites: microprobe and thermomagnetic data, Izv., Phys. Solid Earth, 2015a, vol. 51, no. 5, pp. 748–763.

    Article  Google Scholar 

  56. 56

    Pechersky, D.M., Markov, G.P., and Tsel’movich, V.A., Pure iron and other magnetic minerals in meteorites, Sol. Syst. Res., 2015b, vol. 49, no. 1, pp. 61–71.

    Article  Google Scholar 

  57. 57

    Pechersky, D.M., Kuzina, D.M., Ivanov, E.V., Kuz’min, M.I., Nurgaliev, D.K., and Tsel’movich, V.A., Thermomagnetic analysis of native iron from the upper sedimentary horizons of Lake Baikal, section GC-99 (Posolskaya Bank), Rus. Geol. Geophys., 2017a, vol. 58, no. 12, pp. 1561–1569.

    Article  Google Scholar 

  58. 58

    Pechersky, D. M., Kuzina, D.M., Markov, G.P., and Tsel’movich, V.A., Native iron in the Earth and space, Izv., Phys. Solid Earth, 2017b, vol. 53, no. 5, pp. 658–676.

    Article  Google Scholar 

  59. 59

    Pechersky, D.M., Kazanskii, A.Yu., Markov, G.P., Tselmovich, V.A., and Shchetnikov, A.A., Unique phenomenon of the accumulation of terrestrial metal iron particles in lacustrine deposits: Zhombolok volcanic region, East Sayan, Izv., Phys. Solid Earth, 2018, vol. 54, no. 1, pp. 106–120.

    Article  Google Scholar 

  60. 60

    Petromagnitnaya model’ litosfery (Petromagnetic Model of the Lithosphere), Pashkevich, I.K., Ed., Kiev: Naukova Dumka, 1994.

    Google Scholar 

  61. 61

    Shterenberg, L.S. and Vasil’eva, G.L., Native metals and intermetallic compounds in sediments of northeastern Pacific, Litol. Polezn. Iskop., 1979, no. 2, pp. 133–139.

  62. 62

    Tsel’movich, V.A., Pechersky, D.M., and Markov, G.P., Distinctive characteristics of magnetic minerals of the Chelkyabinsk meteorite, in Meteorit Chelyabinsk—god na Zemle: materialy Vserossiiskoi nauchnoi konferentsii (Chelyabinsk Meteorite: One Year on the Earth. Proc. All-Russian Scientific Coference), Chelyabinsk: CIP, Chelyabinsk OUNB, 2014, pp. 612–636.

  63. 63

    Weiss, B.P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U.R., Paleomagnetic records of meteorites and early planetesimal differentiation, Space Sci. Rev., 2010, vol. 152, nos. 1–4, pp. 341–390.

    Article  Google Scholar 

  64. 64

    Zharkov, V.N., Vnutrennee stroenie Zemli i planet (Interior Structure of the Earth and Planets), Moscow: Nauka, 2013.

Download references

ACKNOWLEDGMENTS

We thank V. Tselmovich for conducting the microprobe analysis of the samples and A. Kosterov for his useful comments and correction of the text. The work was conducted as part of a state contract of IPE RAS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. P. Markov.

Additional information

In Lieu of an Epigraph: Anniversary of IPE RAS and One of the Authors of the Paper, D. Pechersky, Both Born in 1928

Translated by M. Nazarenko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pechersky, D.M., Markov, G.P. The History and State-of-the-Art of the Studies of Native Iron in Terrestrial and Extraterrestrial Rocks. Izv., Phys. Solid Earth 55, 287–297 (2019). https://doi.org/10.1134/S1069351319020083

Download citation

Keywords:

  • iron
  • nickel
  • sediments
  • basalts
  • meteorites
  • thermomagnetic analysis
  • microprobe analysis