Skip to main content
Log in

Detailed Study of Time Variations in the Gutenberg–Richter b-value Based on Highly Accurate Seismic Observations at the Garm Prognostic Site, Tajikistan

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The time variations in the Gutenberg–Richter b-value are minutely studied based on the data of highly accurate seismological observations at the Garm prognostic site, Tajikistan, where a stationary network of seismic stations of the Complex Seismological Expedition (CSE) of Schmidt Institute of Physics of the Earth (IPE) of the USSR (Russian) Academy of Sciences was in operation from 1955 to 1992. A total of 93035 local earthquakes ranging from 0.0 to 6.3 in the Ml magnitudes are considered. The spatiotemporal fluctuations in the minimal magnitude of completeness of the earthquakes, Mc, are analyzed. The study considers a 25-year interval of the observations at the center of the observation system within which Mc = 0.9. It is shown that in most cases, the b-value and log10E2/3 experience characteristic time variations before the earthquakes with magnitudes higher than the minimal magnitude of the predicted earthquake (MPE). The 6-year anomaly in the parameters’ b-value, log10E2/3, and log10N associated with the single strongest earthquake with M = 6.3 that occurred in the observation region on October 26, 1984 is revealed. The inversely proportional relationship is established between the time variations in the b-value and the time variations in the velocities of seismic waves Vp and Vp/Vs. It is shown that the exponent p in the power function which links the time variations of the b-value and log10E2/3 is higher in the zones of crustal compression than in the zones of extension. It is simultaneously confirmed that the average b-value in the zones of compression is lower than in the zones of extension. It is established that in the case of earthquakes with M ≥ 2.6, the time series of seismic activity log10Ni and the time series of the b-value are highly cross correlated with a coefficient of r ≈ 0.75, whereas in the case of earthquakes with M ≥ 0.9, the coefficient of cross correlation between these time series is close to zero (r ≈ 0.06). The law of variations in the slope of the lines approximating the relationship between the log10Ni time series in the different magnitude ranges (MMci) and b-value time series is obtained. It is hypothesized that the seismic activity of the earthquakes with high magnitudes can be estimated provided that the parameters of the time series of the b-value and time series of the number of earthquakes logNMi) in the range of low magnitudes are known. It is concluded that using the parameter log10N for prognostic estimates of the strong earthquakes only makes sense for earthquakes having moderate and large magnitudes. It is inferred that the time variations in the b-value are predominantly contributed by the time variations of the earthquakes with relatively large magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K., Maximum likelihood estimate of b in the formula log10N = a–b M and its confidence limits, Bull. Earthq. Res. Inst., 1965, vol. 43, pp. 237–239.

    Google Scholar 

  • Avtomatizirovannaya obrabotka dannykh na Garmskom poligone (Automatic Data Processing at Garm Test Site), Sidorin, A.Ya., Ed., Moscow–Garm: IFZ AN SSSR, 1991.

  • Baskoutas, I. and D’Alessandro, A., Study of the seismicity temporal variation for the current seismic hazard evaluation in Val d’Agri, Italy. Nat. Hazards Earth Syst. Sci., 2014, vol. 14, pp. 3169–3174.

    Article  Google Scholar 

  • Baskoutas, I. and Popandopoulos, G., Qualitative precursory pattern before several strong earthquakes in Greece, Res. Geophys., 2014, vol. 4, pp. 7–11. doi 10.4081/rg.2014.4899

    Google Scholar 

  • Baskoutas, I., Popandopoulos, G.A., and Prasanta, C., Temporal variation of seismic parameters in the western part of the India-Eurasia plate collision zone. Res. Geophys., 2011, vol. 1, no. 1, e3.

    Article  Google Scholar 

  • Bath, M., Spectral Analysis in Geophysics, Amsterdam: Elsevier, 1974.

    Google Scholar 

  • Cao, A. and Gao, S.S., Temporal variation of seismic b-value beneath northeastern Japan Island Arc, Geophys. Res. Lett., 2002, vol. 29, no. 9, pp. 1–3. doi 10.1029/ 2001GL013775

    Article  Google Scholar 

  • Dobrovol’skii, I.P., Preparation of an earthquake. Deformations and the size of the zone of precursory manifestations, in Eksperimental’naya seismologiya (Erxperimental Seismology), Moscow: Nauka, 1983, pp. 17–25.

    Google Scholar 

  • Dobrovol’skii, I.P., Kushnir, G.S., and Fridman, V.N., Theoretical modeling of seismic probing in Modelirovanie predvestnikov zemletryasenii (Earthquake Precursor Modeling), Moscow: Nauka, 1980, pp. 55–84.

    Google Scholar 

  • Eneva, M., Hamburger, M.W., and Popandopulo, G.A., Spatial distribution of eartquakes in aftershock zones of the Garm region, Soviet Central Asia. Geophys. J. Int., 1992, vol. 109, pp. 38–53

    Google Scholar 

  • Garmskii geofizicheskii poligon (Garm Geophysical Test Site), Sidorin, A.Ya., Ed., Moscow: IFZ AN SSSR, 1990.

  • Gomberg, J., Seismicity and detection/location threshold in the southern Great Basin seismic network, J. Geophys. Res., 1991, vol. 96, no. B10, pp. 16401–16414.

    Article  Google Scholar 

  • Gutenberg, B. and Richter, Ch.F., Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 1944, vol. 34, pp. 185–188.

    Google Scholar 

  • Gutenberg, B. and Richter, Ch.F., Earthquake magnitude, intensity, energy and acceleration. Part II, Bull. Seismol. Soc. Am., 1956, vol. 46, no. 2, pp. 105–145.

    Google Scholar 

  • Hamburger, M.W., Sarewitz, D.E., Pavlis, G.L., and Popandopulo, G.A., Structural and seismic evidence for intracontinental subduction in the Peter the First Range, Soviet Central Asia, Geol. Soc. Am. Bull., 1992, vol. 104, pp. 397–408.

    Article  Google Scholar 

  • Hamburger, M.W., Swanson, W.A. and Popandopulo, G.A., Velocity structure and seismicity in the Garm region Central Asia, Geophys. J. Int., 1993, vol. 115, pp. 497–511.

    Article  Google Scholar 

  • Hauksson, E., Jones, L., and Hutton, K., The 1999 Mw 7.1 Hector Mine, California, earthquake sequence: complex conjugate strike-slip faulting, Bull. Seismol. Soc. Am., 2002, vol. 92, no. 4, pp. 1154–1170.

    Article  Google Scholar 

  • Ishimoto, M. and Iida, K., Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthq. Res. Inst., 1939, vol. 17, pp. 443–478.

    Google Scholar 

  • Kasahara, K., Earthquake Mechanics, Cambridge: Cambridge Univ. Press, 1981.

    Google Scholar 

  • Keilis-Borok, V.I., On estimation of the displacement in an earthquake source and of source dimensions, Ann. Geophys., 1959, vol. 12, pp. 205–214.

    Google Scholar 

  • Kijko, A. and Sellevoll, M.A., Estimation of earthquake hazard parameters from incomplete data files: 2. Incorporation of magnitude heterogeneity, Bull. Seismol. Soc. Am., 1992, vol. 82, no. 1, pp. 120–134.

    Google Scholar 

  • Kostrov, B.V. and Das, S., Principles of Earthquake Source Mechanics, Applied Math. Mech. Ser., Cambridge: Cambridge University Press, 1988.

    Google Scholar 

  • Lin, J., Sibueti, J., Lee, C., Hsu, S., and Klingelhoefer, F., Spatial variations in the frequency-magnitude distribution of earthquakes in the south-western Okinawa Trough, Earth Planet. Space, 2007, vol. 59, pp. 221–225.

    Article  Google Scholar 

  • Lukk, A.A. and Popandopoulos, G.A., Reliability of determining the parameters of Gutenberg–Richter distribution for weak earthquakes in Garm, Tajikistan, Izv., Phys. Solid Earth, 2012, vol. 48, no. 9–10, pp. 698–720.

    Article  Google Scholar 

  • Main, I.G. and Burton, P.W., Information theory and the earthquake frequency-magnitude distribution, Bull. Seismol. Soc. Am., 1984, vol. 74, pp. 1409–1426.

    Google Scholar 

  • Main, I.G. and Burton, P.W., Long-term earthquake recurrence constrained by tectonic moment release rates, Bull. Seismol. Soc. Am., 1986, vol. 76, pp. 297–304.

    Google Scholar 

  • Main, I.G., Meredith, P.G., and Sammonds, P.R., Temporal variations in seismic event rate and b-value from stress corrosion constitutive laws, Tectonophysics, 1992, vol. 211, nos. 1–4, pp. 233–246.

    Article  Google Scholar 

  • Marzocchi, W. and Sandri, L., A review and new insights on the estimation of the b-value and its uncertainty, Ann. Geophys., 2003, vol. 46, pp. 1271–1282.

    Google Scholar 

  • Maxwell, S.C., Shemata, J., Campbell, E., and Quirk, D., Microseismic deformation rate monitoring, SPE Annual Technical Conference and Exhibition, Denver, 2008, USA ID: SPE 116596-MS.

    Google Scholar 

  • Mendecki, A.J., Real time quantitative seismology in mines, in Rockbursts and Seismicity in Mines, Young, R.P., Ed., Rotterdam: Balkema, 1993, pp. 287–295.

    Google Scholar 

  • Mignan, A. and Woessner, J., Estimating the magnitude of completeness for earthquake catalogs, Community Online Resource for Statistical Seismicity Analysis, 2012. doi 10.5078/corssa-00180805

    Google Scholar 

  • Mogi, K., Study of the elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena, Bull. Earthq. Res. Inst. Tokyo Univ., 1962, vol. 40, pp. 125–173.

    Google Scholar 

  • Mori, J. and Abercrombie, R.E., Depth dependence of earthquake frequency-magnitude distributions in California: Implications for the rupture initiation, J. Geophys. Res., 1997, vol. 102, pp. 15081–15090.

    Article  Google Scholar 

  • Myachkin, V.I., Kostrov, B.V., Sobolev, G.A., and Shamina, O.G., Introduction to the Physics of the Source and Precursors of Earthquakes, in Fizika ochaga zemletryaseniya (Earthquake Source Physics), Moscow: Nauka, 1975, pp. 6–29.

    Google Scholar 

  • Nersesov, I.L. and Popandopulo, G.A., Spatial heterogeneity in the time variations of velocity parameters in the Earth’s crust of the Garm region, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 8, pp. 13–24.

    Google Scholar 

  • Nersesov, I.L., Ponomarev, V.S., and Teitel’baum, Yu.M., Effect of seismic quiescence before large earthquakes, in Issledovaniya po fizike zemletryasenii (Studies in Earthquake Physics), Moscow: Nauka, 1976, pp. 149–169.

    Google Scholar 

  • Nersesov, I.L., Popandopulo, G.A., Rulev, B.G., Zhuravlev, V.I., Lukk, A.A., Martynov, V.G., Ponomarev, V.S., Rautian, T.G., Sidorin, A.Ya., Teitel’baum, Yu.M., Khalturin, V.I., and Yunga, S.L., Computer-aided system for complex processing of geophysical information at Garm prognostic site, in Eksperimental’naya seismologiya (Experimental Seismology), Sadovskii, M.A., Ed., Moscow: Nauka, 1983, pp. 195–201.

    Google Scholar 

  • Ogata, Y., Imoto, M., and Katsura, K., 3-D Spatial Variation of b-value of Magnitude-Frequency Distribution beneath the Kanto District, Japan, Geophys. J. Int., 1991, vol. 104, pp. 135–146.

    Article  Google Scholar 

  • Papadopoulos, G.A., The method for simultaneous location of hypocenters of the earthquakes and determination of seismic velocities, in Eksperimental’naya seismologiya (Experimental Seismology), Moscow: Nauka, 1983, pp. 109–118.

    Google Scholar 

  • Papadopoulos, G.A., Hypocenter Location of local earthquakes at the Garm test area, in Zemletryaseniya i protsessy ikh podgotovki (Earthquakes and Processes of Their Preparation), Moscow: Nauka, 1991, pp. 5–23.

    Google Scholar 

  • Papadopoulos, G.A. and Baskoutas, I.G., New tool for the temporal variation analysis of seismic parameters, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, pp. 859–864. www.nat-hazards-earth-syst-sci.net/9/859/2009.

    Article  Google Scholar 

  • Popandopoulos, G.A. and Baskoutas, I., Regularities in the time variations of seismic parameters and their implications for prediction of strong earthquakes in Greece, Izv., Phys. Solid Earth, 2011, vol. 47, no. 11, pp. 974–994.

    Article  Google Scholar 

  • Popandopoulos, G.A. and Chatziioannou, E., Gutenberg–Richter law parameters analysis using the Hellenic Unified Seismic Network data through FastBee technique, Earth Sci., 2014, vol 3, no. 5, pp. 122–131. doi 10.11648/jearth.20140305.12

    Google Scholar 

  • Popandopulo, G.A. and Lukk, A.A., The depth variations in the b-value of frequency–magnitude distribution of the earthquakes in the Garm region of Tajikistan, Izv., Phys. Solid Earth, 2014, vol. 50, no. 2, pp. 273–288.

    Article  Google Scholar 

  • Popandopulo, G.A. and Nersesov, I.L., Some results of analyzing the 30-year time series of velocity parameters at Garm site, in Zemletryaseniya i protsessy ikh podgotovki (Earthquakes and The Processes of Their Preparation), Moscow: Nauka, 1991, pp. 139–152.

    Google Scholar 

  • Popandopoulos, G.A., Baskoutas, I., and Chatziioannou, E., The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg–Richter law b-value parameter using the earthquake catalog of Greece, Izv., Phys. Solid Earth, 2016, vol. 52, no. 2, pp.195–209

    Article  Google Scholar 

  • Rao, M.V.M.S. and Lakshmi, K.J.P., Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture, Current Sci., 2005, vol. 89, no. 9.

    Google Scholar 

  • Riznichenko, Yu.V., Methods for routine location of the hypocenters of local earthquakes and seismic velocities in the source area, Izv. Akad. Nauk SSSR, Geofizika, 1958a, no. 4, pp. 425–437.

    Google Scholar 

  • Riznichenko, Yu.V., On studying the seismic regime, Izv. Akad. Nauk SSSR, Geofizika, 1958b, no. 9, pp. 1057–1074.

    Google Scholar 

  • Ruff, L., Jr., Asperity distributions and large earthquake occurrence in subduction zones, Tectonophysics, 1992, vol. 211, pp. 61–83.

    Article  Google Scholar 

  • Rydelek, P.A. and Sacks, I.S., Testing the completeness of earthquake catalogs and the hypothesis of self-similarity, Nature, 1989, vol. 337, pp. 251–253.

    Article  Google Scholar 

  • Eksperimental’naya Seismologiya (Experimental Seismology), Sadovskii, M.A., Ed., Moscow: Nauka, 1983.

  • Sadovskii, M.A. and Pisarenko, V.F., On the dependence of the duration of earthquake preparation on its energy, Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 2, pp. 330–333.

    Google Scholar 

  • Sadovskii, M.A. and Pisarenko, V.F., Seismicheskii protsess v blokovoi srede (Seismic Process in Block Medium), Moscow: Nauka, 1991.

    Google Scholar 

  • Sandri, L. and Marzocchi, W., A technical note on the bias in the estimation of the b-value and its uncertainty through the least squares technique, Ann. Geophys., 2007, vol. 50, no. 3, pp. 329–339.

    Google Scholar 

  • Scholz, C.H., The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 1968, vol. 58, pp. 399–415.

    Google Scholar 

  • Schorlemmer, D., Wiemer, S., and Wyss, M., Earthquake statistics at Park Field: 1. Stationarity of b-value, J. Geophys. Res., 2004a, B12307. doi 10.1029/2004JB003234

    Google Scholar 

  • Schorlemmer, D., Wiemer, S., Wyss, M., and Jackson, D.D., Earthquake statistics at Park Field: 2. Probabilistic forecasting and testing, J. Geophys. Res., 2004b, B12307. doi 10.1029/2004JB003234

    Google Scholar 

  • Schorlemmer, D., Wiemer, S., and Wyss, M., Variations in earthquake-size distribution across different stress regimes, Nature Lett., 2005, vol. 437, pp. 539–542. doi 10.1038/nature04094

    Article  Google Scholar 

  • Shapiro, S.A., Dinske, C., and Kumerow, J., Probability of a given-magnitude earthquake induced by fluid injection, Geophys. Res. Lett., 2007, vol. 34. http://dx.doi.org/ doi 10.1029/GL031615

  • Shi, Y. and Bolt, B.A., The standard error of the magnitude–frequency b-value, Bull. Seismol. Soc. Am., 1982, vol. 72, pp. 1677–1687.

    Google Scholar 

  • Shiotani, T., Yuyama, S., Li, Z.W., and Ohtsu, M., Application of the AE improved b-value to qualitative evaluation of fracture process in concrete materials, J. Acoust. Emiss., 2001, no. 19, pp. 118–132.

    Google Scholar 

  • Smirnov, V.B., Earthquake catalogs: evaluation of data completeness, Volcanol. Seismol., 1998, vol. 19, pp. 497–510.

    Google Scholar 

  • Smirnov, V.B. and Gabsatarova, I.P., Completeness of the North Caucasian earthquake catalogue: calculated data and statistical estimates, Vestnik OGGGGN, 2000, vol. 14, no. 4, pp. 83–95.

    Google Scholar 

  • Sobolev, G.A., Osnovy prognoza zemletryasenii (Introduction to the Earthquake Prediction), Moscow: Nauka, 1993.

    Google Scholar 

  • Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.

    Google Scholar 

  • Spada, M., Tormann, T., Wiemer, S. and Enescu, B., Generic dependence of the frequency–size distribution of earthquakes on depth and its relation to the strength profile of the crust, Geophys. Res. Lett., 2013, vol. 40, pp.709–714. doi 10.1029/2012GL054198

    Article  Google Scholar 

  • Teitel’baum, Yu.M. and Ponomarev, V.S., Seismicheskii rezhim i sil’nye zemletryaseniya, in Eksperimental’naya seismologiya (Experimental Seismology), Moscow: Nauka, 1983, pp. 88–98.

    Google Scholar 

  • Wiemer, S., A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 2001, vol. 72, pp. 373–382.

    Article  Google Scholar 

  • Wiemer, S. and Benoit, J., Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones, Geophys. Res. Lett., 1996, vol. 23, pp. 1557–1560.

    Article  Google Scholar 

  • Wiemer, S. and Wyss, M., Mapping the frequency–magnitude distribution in asperities: an improved technique to calculate recurrence times?, J. Geophys. Res., 1997, vol. 102, pp. 15115–15128.

    Article  Google Scholar 

  • Wiemer, S. and Wyss, M., Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am., 2000, vol. 90, pp. 859–869.

    Article  Google Scholar 

  • Wiemer, S. and Wyss, M., Mapping spatial variability of the frequency–magnitude distribution of earthquakes, Adv. Geophys., 2002, vol. 45, pp. 259–302.

    Article  Google Scholar 

  • Wiemer, S., McNutt, S.R., and Wyss, M., Temporal and three-dimensional spatial analysis of the frequency–magnitude distribution near Long Valley caldera, California, Geophys. J. Int., 1998, vol. 134, pp. 409–421.

    Article  Google Scholar 

  • Woessner, J. and Wiemer, S., Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am., 2005, vol. 95, pp. 684–698.

    Article  Google Scholar 

  • Wyss, M., Hasegawa, A., and Nakajima, J., Source and path of magma for volcanoes in the subduction of northeastern Japan. Geophys. Res. Lett., 2001a, vol. 28, pp. 1819–1822.

    Article  Google Scholar 

  • Wyss, M., Nagamine, K., Klein, F.W., and Wiemer, S., Evidence for magma at intermediate crustal depth below Kilauea’s East Rift, Hawaii, based on anomalously high b-value, J. Volcanol. Geotherm. Res., 2001b, vol. 106, pp. 23–37.

    Article  Google Scholar 

  • Zavyalov, A.D., Srednesrochnyi prognoz zemletryasenii: osnovy, metodika, realizatsiya (Intermediate-Term Earthquake Prediction: Principles, Methods, Implementation), Moscow: Nauka, 2006.

    Google Scholar 

  • Zemletryaseniya i protsessy ikh podgotovki (Earthquakes and Processes of Their Preparation), Strakhov, V.N., Ed., Moscow: Nauka, 1991.

  • Zheng, B., Hamburger, M.W., and Popandopulo, G.A, Precursory seismicity changes preceding moderate and large earthquakes in the Garm region, Central Asia, Bull. Seismol. Soc. Am., 1995, vol. 85, pp. 571–589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Popandopoulos.

Additional information

Original Russian Text © G.A. Popandopoulos, 2018, published in Fizika Zemli, 2018, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popandopoulos, G.A. Detailed Study of Time Variations in the Gutenberg–Richter b-value Based on Highly Accurate Seismic Observations at the Garm Prognostic Site, Tajikistan. Izv., Phys. Solid Earth 54, 612–631 (2018). https://doi.org/10.1134/S1069351318040092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351318040092

Keywords

Navigation