Izvestiya, Physics of the Solid Earth

, Volume 54, Issue 2, pp 336–348 | Cite as

Oceanic Loading and Local Distortions at the Baksan, Russia, and Gran Sasso, Italy, Strain Stations

  • V. K. Milyukov
  • A. Amoruso
  • L. Crescentini
  • A. P. Mironov
  • A. V. Myasnikov
  • A. V. Lagutkina
Article
  • 3 Downloads

Abstract

Reliable use of strain data in geophysical studies requires their preliminary correction for ocean loading and various local distortions. These effects, in turn, can be estimated from the tidal records which are contributed by solid and oceanic loading. In this work, we estimate the oceanic tidal loading at two European strain stations (Baksan, Russia, and Gran Sasso, Italy) by analyzing the results obtained with the different Earth and ocean models. The influence of local distortions on the strain measurements at the two stations is estimated.

Keywords

oceanic loading local distortions strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, D.C., SPOTL: some programs for ocean-tide loading, SIO Ref. Ser. 96–8, La Jolla: Scripps Institution of Oceanography, 1996.Google Scholar
  2. Amoruso, A. and Crescentini, L., Slow diffusive fault slip propagation following the 6 April 2009 L’Aquila earthquake: Italy, Geophys. Res. Lett., 2009a, vol. 36, L24306. doi 10.1029/2009GL041503CrossRefGoogle Scholar
  3. Amoruso, A. and Crescentini, L., The geodetic laser interferometers at Gran Sasso, Italy: recent modifications and correction for local effects, J. Geodyn., 2009b, vol. 48, pp. 120–125. doi 10.1016/j.jog.2009.09.025CrossRefGoogle Scholar
  4. Amoruso, A. and Crescentini, L., Limits on earthquake nucleation and other pre-seismic phenomena from continuous strain in the near field of the 2009 L’Aquila earthquake, Geophys. Res. Lett., 2010, vol. 37, L10307. doi 10.1029/2010GL043308CrossRefGoogle Scholar
  5. Amoruso, A., Crescentini, L., and Scarpa, R., Removing tidal and atmospheric effects from Earth deformation measurements, Geophys. J. Int., 2000, vol. 140, pp. 493–499.CrossRefGoogle Scholar
  6. Amoruso, A., Botta, V., and Crescentini, L., Free core resonance parameters from strain data: sensitivity analysis and results from the Gran Sasso (Italy) extensometers, Geophys. J. Int., 2012, vol. 189, pp. 923–936.CrossRefGoogle Scholar
  7. Amoruso, A., Crescentini, L., Petitta, M., and Tallini, M., Parsimonious recharge/discharge modeling in carbonate fractured aquifers: the groundwater flow in the Gran Sasso aquifer (Central Italy), J. Hydrol., 2013, vol. 476, pp. 136–146.CrossRefGoogle Scholar
  8. Amoruso, A., Crescentini, L., Martino, S., Petitta, M., and Tallini, M., Correlation between groundwater flow and deformation in the fractured carbonate Gran Sasso aquifer (INFN underground laboratories, Central Italy), Water Resour. Res., 2014, vol. 50, no. 6, pp. 4858–4876. doi 10.1002/2013WR014491CrossRefGoogle Scholar
  9. Crescentini, L. and Renzella, G., A wide-band high-sensitivity laser strainmeter, Rev. Sci. Instrum., 1991, vol. 62, pp. 1206–1209.CrossRefGoogle Scholar
  10. Crescentini, L., Amoruso, A., Fiocco, G., and Visconti, G., Installation of a high-sensitivity laser strainmeter in a tunnel in Central Italy, Rev. Sci. Instrum., 1997, vol. 68, pp. 3206–3210.CrossRefGoogle Scholar
  11. Crescentini, L., Amoruso, A., and Scarpa, R., Constraints on slow earthquake dynamics from a swarm in Central Italy, Science, 1999, vol. 286, pp. 2132–2134.CrossRefGoogle Scholar
  12. Eanes, R.J., Diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry, EOS Trans. AGU, 1994, vol. 108.Google Scholar
  13. Egbert, G.D. and Erofeeva, S.Y., Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 2002, vol. 19, pp. 183–204.CrossRefGoogle Scholar
  14. Farrell, W.E., Deformation of the Earth by surface loads, Rev. Geophys. Space Phys., 1972, vol. 10, pp. 761–797.CrossRefGoogle Scholar
  15. Harkrider, D., Surface waves in multilayered elastic media (2): higher mode spectra and spectral ratios from point sources in plane-layered earth models, Bull. Seismol. Soc. Am., 1970, vol. 60, pp. 1937–1987.Google Scholar
  16. Harrison, J.C., Cavity and topographic effects in tilt and strain measurements, J. Geophys. Res., 1976, vol. 81, pp. 319–328.CrossRefGoogle Scholar
  17. Le Provost, C., Genco, M.L., Lyard, F., Vincent, P., and Canceil, P., Spectroscopy of the world ocean tides from a nite element hydrodynamic model, J. Geophys. Res., 1994, vol. 99, pp. 777–797.CrossRefGoogle Scholar
  18. Lyard, F., Lefevre, F., Letellier, T., and Francis, O., Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam., 2006, vol. 56, pp. 394–415.CrossRefGoogle Scholar
  19. Mao, W.J., Loading tides on a stratified viscoelastic selfgravitating half-space, Geophys. J. Int., 1990, vol. 102, pp. 537–550.CrossRefGoogle Scholar
  20. Melchior, P., The Tides of the Planet Earth, 2nd ed., Oxford: Pergamon, 1983.Google Scholar
  21. Milyukov, V.K. and Myasnikov, A.V., Metrological characteristics of the Baksan laser interferometer, Izmer. Tekh., 2005, no. 12, pp. 26–30.Google Scholar
  22. Milyukov, V.K., Klyachko, B.S., Myasnikov, A.V., Striganov, P.S., Yanin, A.F., and Vlasov, A.N., A laser interferometer–deformograph for monitoring the crust movement, Instrum. Exp. Tech., 2005, vol. 48, no. 6, pp. 780–795.CrossRefGoogle Scholar
  23. Milyukov, V.K., Kopaev, A.V., Lagutkina, A.V., Mironov, A.P., and Myasnikov, A.V., Observations of crustal tide strains in the Elbrus area, Izv., Phys. Solid Earth, 2007, vol. 43, no. 11, pp. 922–930.CrossRefGoogle Scholar
  24. Molodenskii, S.M., Determining the tidal deformational perturbations for plane Earth’s topography, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1983, no. 7, pp. 80–96.Google Scholar
  25. Mukai, A., Takemoto, S., and Yamamoto, T., Fluid core resonance revealed from a laser extensometer at the Rokko-Takao station, Kobe, Japan, Geophys. J. Int., 2004, vol. 156. pp. 22–28.CrossRefGoogle Scholar
  26. Park, J., Amoruso, A., Crescentini, L., and Boschi, E., Long-period toroidal Earth free oscillations from the great Sumatra-Andaman earthquake observed by paired laser extensometers in Gran Sasso, Italy, Geophys. J. Int., 2008, vol. 173, pp. 887–905.CrossRefGoogle Scholar
  27. Tamura, Y. and Agnew, D.C., Baytap08. Users Manual. Technical Report. La Jolla: Scripps Institution of Oceanography, 2008. http://repositories.cdlib.org/sio/techreport/82/Google Scholar
  28. Tamura, Y., Sato, T., Ooe, M., and Ishiguro, M., A procedure for tidal analysis with a Bayesian information criterion, Geophys. J. Int., 1991, vol. 104, pp. 507–516.CrossRefGoogle Scholar
  29. Vanicek, P., Further development and properties of the spectral analysis by least-squares, Astrophys. Space Sci., 1971, vol. 12, pp. 10–33.CrossRefGoogle Scholar
  30. Venedikov, A.P., Arnoso, J., and Vieira, R., VAV: a program for tidal data processing, Comput. Geosci., 2003, vol. 29, pp. 487–502.CrossRefGoogle Scholar
  31. Wahr, J.M. and Sasao, T., A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free core nutation, Geophys. J. R. Astron. Soc., 1981, vol. 64, pp. 747–765.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. K. Milyukov
    • 1
  • A. Amoruso
    • 2
  • L. Crescentini
    • 2
  • A. P. Mironov
    • 1
  • A. V. Myasnikov
    • 1
  • A. V. Lagutkina
    • 1
  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.University of SalernoFiscianoItaly

Personalised recommendations