Advertisement

Izvestiya, Physics of the Solid Earth

, Volume 54, Issue 2, pp 284–291 | Cite as

Strongest Earthquake-Prone Areas in Kamchatka

  • B. A. Dzeboev
  • S. M. Agayan
  • Yu. I. Zharkikh
  • R. I. Krasnoperov
  • Yu. V. Barykina
Article
  • 10 Downloads

Abstract

The paper continues the series of our works on recognizing the areas prone to the strongest, strong, and significant earthquakes with the use of the Formalized Clustering And Zoning (FCAZ) intellectual clustering system. We recognized the zones prone to the probable emergence of epicenters of the strongest (M ≥ 74/3) earthquakes on the Pacific Coast of Kamchatka. The FCAZ-zones are compared to the zones that were recognized in 1984 by the classical recognition method for Earthquake-Prone Areas (EPA) by transferring the criteria of high seismicity from the Andes mountain belt to the territory of Kamchatka. The FCAZ recognition was carried out with two-dimensional and three-dimensional objects of recognition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agayan S.M. and Soloviev, A.A., Recognition of dense areas in metric spaces basing on crystallization, Syst. Res. Inf. Technol., 2004, no. 2, pp. 7–23.Google Scholar
  2. Agayan, S.M., Bogoutdinov, Sh.R., Gvishiani, A.D., Grayeva, E.M., Zlotnicki, J., and Rodkin, M.V., Signal morphology study based on the algorithms of fuzzy logic, Geofiz. Issled., 2005, no. 1, pp. 143–155.Google Scholar
  3. Agayan, S.M., Bogoutdinov, S.R., and Dobrovolsky, M.N., Discrete perfect sets and their application in cluster analysis, Cybern. Syst. Anal., 2014, vol. 50, no. 2, pp. 176–190.CrossRefGoogle Scholar
  4. Fedotov, S.A. and Solomatin, A.V., The long-term earthquake forecast for the Kuril–Kamchatka Island Arc for the September 2013 to August 2018 period; the seismicity of the arc during preceding deep-focus earthquakes in the Sea of Okhotsk (in 2008, 2012, and 2013 at M = 7.7, 7.7, and 8.3), J. Volcanol. Seismol., 2015, vol. 9, no. 2, pp. 65–80.CrossRefGoogle Scholar
  5. Gelfand, I.M., Guberman, Sh.A., Keilis-Borok, V.I., Knopoff, L., Press, F.S., Rantsman, E.Ya., Rotvain, I.M., and Sadovskii, A.M., Criteria of the origin of strong earthquakes (California and some other regions)}, in Vychislitel’naya seismologiya. Vyp. 9. Issledovanie seismichnosti i modelei Zemli (Computational Seismology: Study of Seismicity and Models of the Earth), Keilis-Borok, V.I., Ed., Moscow, 1976, pp. 3–91.Google Scholar
  6. Gorshkov, A.I., Caputo, M., Keilis-Borok, V.I., Ofitserova, E.I., Rantsman, E.Ya., and Rotvain, I.M., Recognition of probable locations of future strong earthquakes. IX: Italy, M ≥ 6.0, in Vychislitel’naya seismologiya. Vyp. 12. Teoriya i analiz seismologicheskikh nablyudenii (Computational Seismology. Vol. 12: Theory and Analysis of seismological Observations), Keilis-Borok, V.I., Ed., Moscow, 1979, pp. 3–17.Google Scholar
  7. Gvishiani, A. and Kossobokov, V., Interpretation of the results on recognition of earthquake-prone areas, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1981, vol. 2, pp. 21–36.Google Scholar
  8. Gvishiani, A.D., Zhidkov, M.P., and Soloviev, A.A., Recognition of possible sites for strong earthquakes. X. Sites of earthquakes with M ≥ 7.75 on the Pacific Coast of South America, in Vychislitel’naya seismologiya. Vyp. 14. Matematicheskie modeli stroeniya Zemli i prognoza zemletryasenii (Computational Seismology. Vol. 14: Mathematical Models of the Structure of the Earth and the Earthquake Prediction), Keilis-Borok, V.I., Ed., New York: Allerton, 1983, pp. 56–68.Google Scholar
  9. Gvishiani, A.D., Zhidkov, M.P., and Soloviev, A.A., On transferring the high seismicity criteria for the Andean mountain belt to Kamchatka, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1984, no. 1, pp. 20–33.Google Scholar
  10. Gvishiani, A.D., Gorshkov, A.I., Kossobokov, V.G., and Rantsman, E.Ya., Morphostructures and locations of the earthquakes of Greater Caucasus, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 9, pp. 45–55.Google Scholar
  11. Gvishiani, A.D., Gorshkov, A.I., Kossobokov, V.G., Cisternas, A., and Philip, E., Recognition of possible sites for strong earthquakes. XIV. Pyrenees and Alps, M ≥ 5.0, in Vychislitel’naya seismologiya. Vyp. 20: Chislennoe modelirovanie i analiz geofizicheskikh protsessov (Computational Seismology. Vol. 20: Numerical Simulation and Analysis of Geophysical Processes), Keilis-Borok, V.I., Ed., Moscow, 1987, pp. 123–135.Google Scholar
  12. Gvishiani, A.D., Gorshkov, A.I., Rantsman, E.Ya., Cisternas, A, and Soloviev, A.A., Prognozirovanie mest zemletryasenii v regionakh umerennoi seismichnosti (Recognition of Earthquake-Prone Areas in the Regions of Moderate Seismicity), Moscow: Nauka, 1988.Google Scholar
  13. Gvishiani, A.D. and Dubois, J.O., Artificial Intelligence and Dynamic Systems for Geophysical Applications, Berlin: Springer, 2002. doi 10.1007/978-3-662-04933-4CrossRefGoogle Scholar
  14. Gvishiani, A.D., Agayan, S.M., and Bogoutdinov, Sh.R., Mathematical methods of geoinformatics. I: A new approach to clusterization, Cybern. Syst. Anal., 2002a, no. 2, pp. 238–254.CrossRefGoogle Scholar
  15. Gvishiani, A.D., Diament, M., Mikhailov, V.O., Galdeano, A., Agayan, S.M., Bogoutdinov, Sh.R., and Graeva, E.M., Artificial intelligence algorithms for magnetic anomaly clustering, Izv., Phys. Solid Earth, 2002b, vol. 38, no. 7, pp. 545–559.Google Scholar
  16. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Ledenev, A.V., Zlotniki, Zh., and Bonnin, Zh., Mathematical methods of geoinformatics. II. Fuzzy-logic algorithms in the problems ofabnormality separation in time series, Cybern. Syst. Anal., 2003, vol. 39, no. 4, pp. 555–563.CrossRefGoogle Scholar
  17. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Tikhotsky, S.A., Hinderer, J., Bonnin, J., and Diament, M., Algorithm FLARS and recognition of time series anomalies, Sistemni Doslidzhennya ta Infofmaciini Tekhnologii, 2004, no. 3, pp. 7–16.Google Scholar
  18. Gvishiani, A.D., Agayan, S.M., and Bogoutdinov, Sh.R., Discrete mathematical analysis and monitoring of volcanoes, Inzh. Ekol., 2008a, no. 5, pp. 26–31.Google Scholar
  19. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Zlotnicki, J., and Bonnin, J., Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series, Cybern. Syst. Anal., 2008b, vol. 44, no. 3, pp. 309–323.CrossRefGoogle Scholar
  20. Gvishiani, A.D., Belov, S.V., Agayan, S.M., Rodkin, M.V., Morozov, V.N., Tatarinov, V.N., and Bogoutdinov, Sh.R., Geo-information technologies: artificial intelligence methods in the assessment of tectonic stability of Nizhnekanskii Massif, Inzh. Ekol., 2008c, no. 2, pp. 3–14.Google Scholar
  21. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., and Soloviev, A.A., Discrete mathematical analysis and applications in geology and geophysics, Vestnik KRAUNTs. Nauki o Zemle, 2010, no. 2, pp. 109–125.Google Scholar
  22. Gvishiani, A.D., Agayan, S.M., Dobrovolsky, M.N., and Dzeboev, B.A., Objective epicenter classification and recognition of the areas of possible occurrence of large earthquakes in California, Geoinformatika, 2013a, no. 2, pp. 44–57.Google Scholar
  23. Gvishiani, A., Dobrovolsky, M., Agayan, S., and Dzeboev, B., Fuzzy-based clustering of epicenters and strong earthquakeprone areas, Environ. Eng. Manage. J., 2013b, vol. 12, no. 1, pp. 1–10.Google Scholar
  24. Gvishiani, A., Dzeboev, B., and Agayan, S., A new approach to recognition of the strong earthquake-prone areas in the Caucasus, Izv., Phys. Solid Earth, 2013c, vol. 49, no. 6, pp. 747–766.CrossRefGoogle Scholar
  25. Gvishiani, A.D. and Dzeboev, B.A., Seismic hazard assessment in selecting the sites for radioactive waste disposal, Gorn. Zh., 2015, no. 10, pp. 39–43.CrossRefGoogle Scholar
  26. Gvishiani, A.D., Dzeboev, B.A., and Agayan, S.M., FCaZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts, Izv., Phys. Solid Earth, 2016, vol. 52, no. 4, pp. 461–492.CrossRefGoogle Scholar
  27. Gvishiani, A.D., Dzeboev, B.A., Sergeeva, N.A., and Rybkina, A.I., Formalized clustering and significant earthquake-prone areas in the Crimean Peninsula and Northwest Caucasus, Izv., Phys. Solid Earth, 2017, vol. 53, no. 3, pp. 353–365.CrossRefGoogle Scholar
  28. Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences. Earthquake Catalog of Kamchatka and Komandor Islands. http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php.Google Scholar
  29. Khain, V.E. and Lomize, M.G., Geotektonika s osnovami geodinamiki (Geotectonics with Elements of Geodynamics), Moscow: MGU, 1995.Google Scholar
  30. Levina, V.I., Lander, A.V., Mityushkina, S.V., and Chebrova, A.Yu., The Seismicity of the Kamchatka Region: 1962–2011, J. Volcanol. Seismol., 2013, vol. 7, no. 1, pp. 37–57.CrossRefGoogle Scholar
  31. Mikhailov, V.O., Galdeano, A., Diament, M., Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Graeva, E.M., and Sailhac, P., Application of artificial intelligence for Euler solutions clustering, Geophysics, 2003, vol. 68, no. 1, pp. 168–180.CrossRefGoogle Scholar
  32. Novyi katalog sil’nykh zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g. (New Catalogue of Strong Earthquakes in USSR from Ancient Time to 1975), Moscow: Nauka, 1977.Google Scholar
  33. Pinegina, T.K. and Konstantinova, T.G., Earthquake in Koryakia, Priroda (Moscow, Russ. Fed.), 2006, no. 9, pp. 57–61.Google Scholar
  34. Soloviev, A.A., Gvishiani, A.D., Gorshkov, A.I., Dobrovolsky, M.N., and Novikova, O.V., Recognition of earthquake-prone areas: methodology and analysis of the results, Izv., Phys. Solid Earth, 2014, vol. 50, no. 2, pp. 151–168.CrossRefGoogle Scholar
  35. Weber, K., Gvishiani, A.D., Godefroy, P., et al., On the classification of highly seismic zones in Western Alp, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986a, no. 12, pp. 3–16.Google Scholar
  36. Weber, K., Gvishiani, A.D., Godefroy, P., Gorshkov, A.I., Kossobokov, V.G., Lambert, J., Ranzman, E.Ya., Sallantin, J., Soldano, A., Cisternas, A., and Soloviev, A.A., Recognition of places where strong earthquakes may occur. XII. Two approaches to recognition of strong earthquakes in Western Alps, in Vychislitel’naya seismologiya. Vyp. 18. Teoriya i analiz seismicheskoi informatsii (Computational Seismology. Vol. 18: Theory and Analysis of Seismological Information), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1986b, pp. 132–154.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. A. Dzeboev
    • 1
    • 2
  • S. M. Agayan
    • 1
  • Yu. I. Zharkikh
    • 1
  • R. I. Krasnoperov
    • 1
  • Yu. V. Barykina
    • 1
  1. 1.Geophysical CenterRussian Academy of SciencesMoscowRussia
  2. 2.Geophysical Institute, Vladikavkaz Scientific CenterRussian Academy of SciencesVladikavkazRussia

Personalised recommendations