Skip to main content
Log in

Ray Tracing Methods in Seismic Emission Tomography

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Highly efficient approximate ray tracing techniques which can be used in seismic emission tomography and in other methods requiring a large number of raypaths are described. The techniques are applicable for the gradient and plane-layered velocity sections of the medium and for the models with a complicated geometry of contrasting boundaries. The empirical results obtained with the use of the discussed ray tracing technologies and seismic emission tomography results, as well as the results of numerical modeling, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aleksandrov, S.I., Mishin, V.A., and Burov, D.I., Problems of borehole and surface microseismic hydrofrac monitoring, Ekspozitsiya Neft’ Gaz, 2015, vol. 45, no. 6, pp. 58–63.

    Google Scholar 

  • Chebotareva, I.Ya., New Algorithms of Emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part I. Algorithms of processing and numerical simulation, Izv., Phys. Solid Earth, 2010a, vol. 46, no. 3, pp. 187–198.

    Article  Google Scholar 

  • Chebotareva, I.Ya., New Algorithms of emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part II. Results of real data processing, Izv., Phys. Solid Earth, 2010b, vol. 46, no. 3, pp. 199–215.

    Article  Google Scholar 

  • Chebotareva, I.Ya., Algorithm of seismic emission tomography in case of spatial decorrelation of the signal, Vestn. Mosk. Gos. Obl. Univ., Ser. Estestv. Nauki, 2011a, no. 1, pp. 101–107.

    Google Scholar 

  • Chebotareva, I., Methods for passive study of the geological environment using seismic noise, Acoust. Phys., 2011b, vol. 57, no. 6, pp. 857–865.

    Article  Google Scholar 

  • Chebotareva, I.Ya., Structure and dynamics of the geological medium in the seismic noise fields: methods and empirical results, in Akustika neodnorodnykh sred. Ezhegodnik Rossiiskogo akusticheskogo obshchestva (Acoustics of Heterogeneous Media, Yearbook of the Russian Acoustic Society), vol. 12, Moscow: GEOS, 2012, pp. 141–146.

    Google Scholar 

  • Chebotareva, I.Ya., Locating of refraction point at the interfaces of complex geometry under a three-dimensional ray tracing, Vopr. Radioelektron., 2017a, no. 3, pp. 124–127.

    Google Scholar 

  • Chebotareva, I.Ya., Tay tracing in the method of seismic emission tomography, Radiopromyshlennost’, 2017b, no. 1, pp. 44–50.

    Article  Google Scholar 

  • Chebotareva, I.Ya. and Volodin, I.A., Images of hydraulic fracture in seismic noise, Dokl. Earth Sci., 2012, vol. 444, no. 1, pp. 621–625.

    Article  Google Scholar 

  • Tchebotareva, I.I., Nikolaev, A.V., and Sato, H., Seismic emission activity of Earth’s crust in northern Kanto, Japan, Phys. Earth Planet Inter., 2000, vol. 120, no. 3, pp. 167–182.

    Article  Google Scholar 

  • Jacob, K.H., Three-dimensional seismic ray tracing in a laterally heterogeneous spherical Earth, J. Geophys. Res., 1970, vol. 75, pp. 6675–6689.

    Article  Google Scholar 

  • Koulakov, I., LOTOS code for local earthquake tomographic inversion: benchmarks for testing tomographic algorithms, Bull. Seismol. Soc. Am., 2009, vol. 99, no. 1, pp. 194–2014.

    Article  Google Scholar 

  • Nikolaev, A.V. and Troitskiy, P.A., Lithospheric studies based on array analysis of P-coda and microseisms, Tectonophysics, 1987, vol. 140, pp. 103–113.

    Article  Google Scholar 

  • Nikolaev, A.V., Troitskii, P.A, and Chebotareva, I.Ya., USSR Inventor’s Certificate no. 1000962, 1983.

    Google Scholar 

  • Nikolaev, A.V., Troitskii, P.A, and Chebotareva, I.Ya., Studying the lithosphere based on seismic noise, Dokl. Akad. Nauk SSSR, 1986, vol. 282, no. 9, pp. 586–591.

    Google Scholar 

  • Obara, K., Nonvolcanic deep tremor associated with subduction in Southwest Japan, Science, 2002, vol. 296, pp. 1679–1681.

    Article  Google Scholar 

  • Roecker, S.W., Sabitova, T.V. Vinnik, L.P., et al., Threedimentional elastic wave velocity structure of the western and central Tien Shan, J.Geophys. Res., 1993, vol. 98, no. 9, pp. 15779–15795.

    Article  Google Scholar 

  • Shmakov, F.D., Surface microseismic monitoring of hydraulic fracture: data processing and interpretation, Tekhnol. Seismorazvedki, 2012, no. 3, pp. 65–72.

    Google Scholar 

  • Stupina, T. and Kulakov, I., Complexity–structure-based approach to studying the range of applicability of the PROFIT algorithm, in Int. Book Series “Information Science and Computing,” 2009, pp. 79–85. The paper is selected from XVth International Conference “Knowledge-Dialogue-Solution” KDS-2 2009, Kyiv, Ukraine, October 2009. http://foibg.com/ibs_isc/ibs-15/ibs-15-p10.pdf.

    Google Scholar 

  • Um, J. and Thurber, C., A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Am., 1987, vol. 77, no. 3, pp. 972–986.

    Google Scholar 

  • Volodin, I.A. and Chebotareva, I.Ya., Seismic emission in technological impact zones, Acoust. Phys., 2014, vol. 60, no. 5, pp. 543–554.

    Article  Google Scholar 

  • Zhao, D., Hasegawa, A., and Horiuchi, S., Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res., 1992, vol. 97, pp. 19909–19928.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Chebotareva.

Additional information

Original Russian Text © I.Ya. Chebotareva, 2018, published in Fizika Zemli, 2018, No. 2, pp. 12–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebotareva, I.Y. Ray Tracing Methods in Seismic Emission Tomography. Izv., Phys. Solid Earth 54, 201–213 (2018). https://doi.org/10.1134/S1069351318020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351318020040

Navigation