Skip to main content
Log in

Subcrustal structure of the black sea basin from seismological data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The P-wave travel time data from the earthquakes offshore and onshore around the Black Sea are used for the tomographic reconstruction of the three-dimensional (3D) velocity distribution in the lithosphere of the region. The preliminary refinement of the foci parameters (the coordinates and origin time) has reduced the random errors in the travel-time data. The earthquake data were supplemented by the previous deep seismic sounding (DSS) data on the profiles in Crimea and offshore off the Black Sea. The dataset included more than 4000 travel times overall. In order to eliminate the crustal effect, the travel times were reduced to a surface at a depth of 35 km corresponding to the mean Moho depth in the region. The improved crustal model was used for removing the contribution of the crust from the initial data. The new tomography method, which was recently developed by one of the authors and which relies on the assumption of smoothness of the lateral velocity variations, was applied for reconstructing the velocity structure of the upper mantle beneath the Black Sea up to a depth of 95 km. The lateral velocity variation maps at different depths and the vertical velocity distributions along the meridional and sublatitudinal cross sections across the Black Sea were constructed. High velocities were revealed in the subcrustal lithosphere, and the structural difference below two subbasins—the West Black Sea (WBS) and the East Black Sea (EBS) ones—was established. It shows that the high-velocity body below the WBS is located deeper than below the EBS and is distinguished by higher velocities. Based on these results, it is concluded that the lithosphere beneath the Black Sea has a continental origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamiya, Sh.A., Gamkrelidze, G.S., Zakariadze, G.S., and Lordkipanidze, M.B., The Adzharo-Trialeti basin and the problem of formation of the deep-water Black Sea basin, Geotektonika, 1974, no. 1, pp. 78–94.

    Google Scholar 

  • Amaru, M., Global travel time tomography with 3D-reference models, PhD Thesis, Utrecht: Utrecht University, 2007.

    Google Scholar 

  • Bakirci, T., Yoshizawa, K., and Özer, M.F., Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography, Geophys. J. Int., 2012, vol. 190, pp. 1058–1076.

    Article  Google Scholar 

  • Baranova, E.P., Yegorova, T.P., and Omel’chenko, V.D., Reinterpretation of the DSS Data and Gravity Modeling along the Profiles 25, 28, and 29 in the Black and Azov Seas, Geofiz. Zh., 2008, no. 5, pp. 124–144.

    Google Scholar 

  • Barrier, E. and Vrielynck, B., Paleotectonic maps of the Middle East, Atlas of 14 maps, Tectonosedimentary-Palinspatic maps from Late Norian to Pliocene, Paris: Commission for the Geologic Map of the Word (CCMW-CCGM-UNESCO, 2008.

    Google Scholar 

  • Belousov, V.V., Volvovsky, B.S., Arkhipov, I.V., Buryanov, V.B., Evsyukov Y.D., Goncharov V.P., Gordienko V.V., Ismagilov D.F., Kislov G.K., Kogan L.I., Kondyurin A.V., Kozlov V.N., Lebedev L.I., Lokholatnikov V.M., Malovitsky Y.P., et al., Structure and Evolution of the Earth’s Crust and Upper Mantle of the Black Sea, Bolletino di Geofisica Teorica ed Applicata, 1988, vol. 30, nos. 117–118, pp. 109–196.

    Google Scholar 

  • Bijwaard, H., Spakman, W., and Engdahl, E., Closing the gap between regional and global travel time tomography, J. Geophys. Res., 1998, vol. 103, no. B12, pp. 30055–30078.

    Article  Google Scholar 

  • Cloetingh, S., Spadini, G., Van Wees, J.D., and Beekman, F., Thermo-mechanical modelling of Black Sea Basin (de)formation, Sediment. Geol., 2003, vol. 156, pp. 169–184.

    Article  Google Scholar 

  • Demirer, A., Wannier, M., Amelin, N., and Petrov, Eu., The black sea basins structure and history: new model based on new deep penetration regional seismic data. part 2: tectonic history and paleogeography, Marine and Petroleum Geology, 2015, vol. 59, pp. 656–670.

    Article  Google Scholar 

  • Dercourt, J., Gaetani, M., Vrienlynk, B., Atlas Tethys Palaeoenviromental Maps, Paris: Gauthier-Villars, 1993.

    Google Scholar 

  • Ditmar, P.G. and Yanovskaya, T.B., Generalization of the Backus-Hilbert Method for Estimating Horizontal Variations in the Surface Wave Velocity, Izv., Akad. Nauk SSSR, Fiz. Zemli, 1987, no. 6, pp. 30–40.

    Google Scholar 

  • Fichtner, A., Saygin, E., Taymaz, T., Cupillard, P., Capdeville, Ya., and Trampert, J., The deep structure of the North Anatolian Fault Zone, Earth Planet. Sci. Lett., 2013, vol. 373, pp. 109–117.

    Article  Google Scholar 

  • Finetti, I., Bricchi, G., Del Ben, A., Pipan, M., and Xuan, Z., Geophysical study of the Black Sea, Bolletino di Geofisica Teorica ed Applicata, 1988, vol. 30, nos. 117–118, pp. 197–324.

    Google Scholar 

  • Gize, P. and Pavlenkova, N.I., Structural maps of the Earth’s crust of Europe, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 10, pp. 3–14.

    Google Scholar 

  • Gobarenko, V.S. and Yegorova, T.P., Three-dimensional P-velocity model of the Black Sea lithosphere from the local seismic tomography data, Geofiz. Zh., 2008, vol. 30, no. 5, pp. 161–177.

    Google Scholar 

  • Gobarenko, V.S. and Yegorova, T.P., The lithosphere structure and geodynamics of the West and East Black Sea basins, Izv., Phys. Solid Earth, 2010, vol. 46, no. 6, pp. 507–523.

    Article  Google Scholar 

  • Gobarenko, V.S. and Yanovskaya, T.B., The velocity structure of the upper mantle levels of the Black Sea basin, Geofiz. Zh., 2011, vol. 33, no. 3, pp. 62–74.

    Google Scholar 

  • Gobarenko, V. and Yanovskaya, T., Lithosphere structure of the Black Sea from 3D gravity analysis and seismic tomography, Geophys. J. Int., 2013, vol. 193, pp. 287–303.

    Article  Google Scholar 

  • Golonka, J., Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic, Tectonophysics, 2004, vol. 381, pp. 235–273.

    Article  Google Scholar 

  • Grad, M. et al. (the ESC Working Group Collab.), The Moho depth map of the European Plate, Geophys. J. Int., 2009, vol. 176, pp. 279–292.

    Article  Google Scholar 

  • Kaban, M.K., Tesauro, M., and Cloetingh, S., An integrated gravity model for the Europe’s crust and upper mantle, Earth Planet. Sci. Lett., 2010, vol. 296, pp. 195–209.

    Article  Google Scholar 

  • Koroleva, T.Yu., Yanovskaya, T.B., and Patrusheva, S.S., Velocity structure of the upper mantle of the East European Platform according to seismic noise data, Izv., Phys. Solid Earth, 2010, vol. 46, no. 10, pp. 839–848.

    Article  Google Scholar 

  • Kostyuchenko, S., Morozov, A., Stephenson, R.A., Solodilov, L.N., Vedrentsev, A.G., Popolitov, K.E., Aleshina, A.F., Vishnevskaya, V.S, and Yegorova, T.P., The evolution of the southern margin of the East European Craton based on seismic, gravity, and magnetic data in preMesozoic time, Tectonophysics, 2004, vol. 381, pp. 101–118.

    Article  Google Scholar 

  • Laske, G., Masters, G., and Reif, C., A new global crustal model at 2 × 2 degrees, 2002. http://mahi.ucsd.edu/Gabi/rem.html

    Google Scholar 

  • Li, L., Clift, P.D., Stephenson, R., and Nguyen, H.T., Non-uniform hyper-extension in advance of seafloor spreading on the Vietnam continental margin and the SWSouth China Sea, Basin Res., 2014, vol. 26, pp. 106–134.

    Article  Google Scholar 

  • Malovitskii, Ya.P. and Neprochnov, Yu.P., Eds., Stroenie Zapadnoi chasti Chernomorskoi vpadiny (The Structure of the Western Part of the Black Sea Basin), Moscow: Nauka, 1972.

    Google Scholar 

  • Marquering, H. and Snieder, R., Shear-wave velocity structure beneath Europe, the Northeastern Atlantic and Western Asia from waveform inversions including surface-wave mode coupling, Geophys. J. Int., 1996, vol. 127, pp. 283–304.

    Article  Google Scholar 

  • Meredith, D.J. and Egan, S.S., The geological and geodynamic evolution of the eastern Black Sea basin: insights from 2D and 3D tectonic modelling, Tectonophysics, 2002, vol. 350, pp. 157–179.

    Article  Google Scholar 

  • Mutlu, A.K. and Karabulut, H., Anisotropic Pn tomography of Turkey and adjacent regions, Geophys. J. Int., 2011, vol. 187, pp. 1743–1758.

    Article  Google Scholar 

  • Nikishin, A.M., Ziegler, P.A., Panov, D.I., Nazarevich, B.P., Brunet, M.F., Stephenson, R.A., Bolotov, S.N., Korotaev,M.V., and Tikhomirov, P.L., Mesozoic and Cenozoic evolution of the Scythian Platform–Black Sea–Caucacus domain, in Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins, Mem. Mus. Natl. Hist. Nat. Ser. A, Ziegler, P.A., Cavazza W., Robertson A.H.F., Crasquin-Soleau, S., Eds., Paris, 2001, vol. 186, pp. 295–346.

    Google Scholar 

  • Nikishin, A.M., Korotaev, A.M., Ershov, A.V., and Brunet, M.-F., The Black Sea basin: tectonic history and Neogene–Quaternary rapid subsidence modeling, Sediment. Geol., 2003, vol. 156, pp. 149–168.

    Article  Google Scholar 

  • Nikishin, A.M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., Petrov, Eu., The Black Sea basins structure and history: new model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography, Mar. Pet. Geol., 2015, vol. 59, pp. 656–670.

    Article  Google Scholar 

  • Okay, A.I., Oengör, A.M.C., and Görür, N, Kinematic history of the opening of the Black Sea and its effect on the surrounding regions, Geology, 1994, vol. 22, pp. 267–270.

    Article  Google Scholar 

  • Okay, A.I., Tansel, O, and Tüysüz, O, Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey, Geol. Mag., 2001, vol. 138, no. 2, pp. 117–142.

    Article  Google Scholar 

  • Pease, P., Daly, J.S., Elming, S.-Å., Kumpulainen, R., Moczydlowska, M., Puchkov, V., Roberts, D., Saintot, A., and Stephenson, R., Baltica in the Cryogenian, 850–630 Ma, in Testing the Rodinia Hypothesis: Records in its Building Blocks, Precambrian Research, Bogdanova, S.V., Li, X.X., Moores, E.M., and Pisarevsky, S.A, Eds., 2008, vol. 160, pp. 46–65.

    Google Scholar 

  • Piese, V., Drachev, S., Stephenson, R., and Zhang, X., Arctic lithosphere—a review, Tectonophysics, 2014, vol. 628, pp. 1–25.

    Article  Google Scholar 

  • Piromallo, C. and Morelli, A., P-wave tomography of the mantle under the Alpine–Mediterranean and Europe, J. Geophys. Res., 2003, vol. 108, no. B2, 2065. doi 10.1029/2002JB001757

    Article  Google Scholar 

  • Robinson, A.G. and Kerusov, E., Stratigraphic and structural development of the Gulf of Odessa, Ukrainian Black Sea: implications for petroleum explorations, Regional and Petroleum Geology of the Black Sea and Surrounding Region, Robinson A.G., Ed., AAPG Memoir, 1997, vol. 68, pp. 369–380.

    Google Scholar 

  • Scott, C.L., Shillington, D.J., Minshull, T.A., Edwards, R.A., Brown, P.J., and White, N.J., Wide-angle seismic data reveal extensive overpressures in the eastern Black Sea Basin, Geophys. J. Int., 2009, vol. 178, pp. 1145–1163.

    Article  Google Scholar 

  • Seismologicheskii byulleten’ Ukrainy (Seismological Bulletin of Ukraine), Sevastopol: NPTs EKOSI-Gidrofizika, 1991–2013.

  • Seismologicheskii byulleten’ zapadnoi territorial’noi zony ESSN (Krym-Karpaty) (Seismological Bulletin of the Western Territorial ESSN Zone (Crimea–Carpathians)), Kiev: Naukova dumka, 1970–1990.

  • Shillington, D.J., White, N., Minshull, T.A., Edwards, G.R.H., Jones, S., Edwards, R.A., and Scott, C.L., Cenozoic evolution of the eastern Black Sea: a test of depth-dependent stretching models, Earth Planet. Sci. Lett., 2008, vol. 265, pp. 360–378, doi 10.1016/j.epsl.2007.10.033

    Article  Google Scholar 

  • Shillington, D.J., Scott, C.L., Minshull, T.A., Edwards, R.A., Brown, P.J., and White, N., Abrupt transition from magmastarved to magma-rich rifting in the eastern Black Sea, Geology, 2009, vol. 37, no. 1, pp. 7–10.

    Article  Google Scholar 

  • Spadini, G., Robinson, A., and Cloetingh, S., Western versus Eastern Black Sea tectonic evolution: pre-rift lithospheric controls on basin formation, Tectonophysics, 1996, vol. 266, pp. 139–154.

    Article  Google Scholar 

  • Spadini, G., Robinson, A.G., and Cloetingh, S.A.P.L., Thermomechanical modelling of Black Sea basin formation, subsidence, and sedimentation, Regional and Petroleum Geology of the Black Sea and Surrounding Region, Robinson, A.G., Ed., AAPG Memoir, 1997, vol. 68, pp. 19–38.

    Google Scholar 

  • Spakman, W., Van Der Lee, S., and Van Der Hilst, R., Travel-time tomography of the European–Mediterranean mantle down to 1400 km, Phys. Earth Planet. Inter., 1993, vol. 79, pp. 3–74.

    Article  Google Scholar 

  • Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., Georgiev, G., Gerasimov, M., Dimitriu, R., Legostaeva, O., Pchelarov, V., and Sava, C., Topography of the crust-mantle boundary beneath the Black Sea basin, Tectonophysics, 2004, vol. 381, pp. 211–233.

    Article  Google Scholar 

  • Starostenko, V.I., Makarenko, I.B., Rusakov, O.B., Pashkevich, I.K., Kutas, R.I., and Legostaeva, O.V., Geophysical heterogeneities of the Black Sea Megabasin Lithosphere, Geofiz. Zh., 2010, vol. 32, no. 5, pp. 3–20.

    Google Scholar 

  • Starostenko, V., Janik, T., Yegorova, T., Farfuliak, L., Czuba, W., roda, P., Thybo, H., Artemieva, I., Sosson, M., Volfman, Y., Kolomiyets D., Lysynchuk, D., Omilchenko, V., Gryn, D., Guterch, A., et al., Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the north western Black Sea and the Crimean Peninsula, Geophys. J. Int., 2015, vol. 201, pp. 406–428.

    Article  Google Scholar 

  • Stephenson, R. and Schellart, W.P., The Black Sea back-arc basin: insights on its origin from geodynamic models of modern analogues, in Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform, Sosson, M., Kaymakci, N., Stephenson, R., Bergerat, F., and Starostenko, V., Eds., London: Geological Society, Special Publicatons, 2010, vol. 340, pp. 11–21.

    Google Scholar 

  • Tesauro, M., Kaban, M.K., and Cloetingh, S.A.P.L., Eucrust-07: a new reference model for the European crust, Geophys. Rev. Lett., 2008, vol. 35, L05313. doi 10.1029/2007/GL032244

    Article  Google Scholar 

  • Tesauro, M., Kaban, M., and Cloetingh, S., A new thermal and rheological model of the European lithosphere, Tectonophysics, 2009, vol. 476, pp. 478–495.

    Article  Google Scholar 

  • Tugolesov, D.A., Gorshkov, A.S., Meisner, L.B., Solov’ev, V.V., and Khakhalev, V.I., Tektonika mezokainozoiskikh otlozhenii Chernomorskoi vpadiny (Tectonics of the Meso–Cenozoic Sediments in the Black Sea Basin), Moscow: Nedra, 1985.

    Google Scholar 

  • Winchester, J.A., Pharaoh, T.C., Ioane, D., and Seghedi, A., Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories, in European Lithosphere Dynamics, Gee, D. and Stephenson, R., Eds., London: Geol. Soc., Memoirs, 2006, vol. 32, pp. 323–332.

    Google Scholar 

  • Yanovskaya, T.B., Distribution of the surface wave group velocities in the North Atlantics, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1982, no. 2, pp. 3–11.

    Google Scholar 

  • Yanovskaya, T.B., The method for three-dimensional traveltime tomography based on smoothness of lateral velocity variations, Izv., Phys. Solid Earth, 2012, vol. 48, no. 5, pp. 363–374.

    Article  Google Scholar 

  • Yegorova, T.P. and Starostenko, V.I., Lithosphere structure of Europe and Northern Atlantic from regional threedimensional gravity modelling, Geophys. J. Int., 2002, vol. 151, pp. 11–31.

    Article  Google Scholar 

  • Yegorova, T. and Gobarenko, V., Structure of the Earth’s crust and upper mantle of Westand East-Black Sea Basins revealed from geophysical data and its tectonic implications, in Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform, Sosson, M., Kaymakci, N., Stephenson, R., Bergerat, F., and Starostenko, V., Eds., London: Geol. Soc., Spec. Publ., 2010, vol. 340, pp. 23–42.

    Google Scholar 

  • Yegorova, T.P., Gobarenko, V.S., Yanovskaya, T.B., and Baranova, K.P., The Black Sea lithosphere structure from 3D gravity analysis and seismic tomography, Geofiz. Zh., 2012, vol. 34, no. 5, pp. 38–59.

    Google Scholar 

  • Yegorova, O., Gobarenko, V., and Yanovskaya, T., Lithosphere structure of the Black Sea from 3D gravity analysis and seismic tomography, Geophys. J. Int., 2013, vol. 193, pp. 287–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Yanovskaya.

Additional information

Original Russian Text © T.B. Yanovskaya, V.S. Gobarenko, T.P. Yegorova, 2016, published in Fizika Zemli, 2016, No. 1, pp. 15–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanovskaya, T.B., Gobarenko, V.S. & Yegorova, T.P. Subcrustal structure of the black sea basin from seismological data. Izv., Phys. Solid Earth 52, 14–28 (2016). https://doi.org/10.1134/S1069351316010109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351316010109

Keywords

Navigation