Skip to main content
Log in

A real P-wave and its dependence on the presence of gas

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Attenuation of seismic compression waves leads to the real existence of a fast P 1 wave in rocks which are fully saturated with dropping fluid and a slow P 2 wave in the rocks containing gas in their pores. This accounts for the seismic blanking zones below the gas horizons for the P 1 waves. Oscillations of gaseous inclusions ensure the energy transfer to the dominant frequencies which are different for the cases of passive seismic (few Hz) and active source seismic (10–20 Hz). The intervals of dominant frequencies are determined from the negative attenuation of these low-frequency waves. According to the observations and the suggested equation, random noise amplifies the signal at these frequencies. Thus, the P 2 waves at the dominant frequency of the active source seismics are applicable for elaborating on the details of the saturation of the production layer by hydrocarbons. The relation to the AVO method (Amplitude Variation with Offset) and dilatancy effect during the preparation of an earthquake is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M.Y., Bertcussen, K.A., et al., A low frequency, passive seismic experiment over a carbonate reservoir in Abu Dhabi, First Break, 2007, vol. 25, no. 11.

    Google Scholar 

  • Ali, M.Y., Bertcussen, K.A., et al., Results from a low frequency passive seismic experiment over an oilfield in Abu Dhabi, First Break, 2009, vol. 27, no. 4.

    Google Scholar 

  • Asan-Dzhalalov, A.G., Kuznetsov, V.V., Kissin, I.G., Nikolaev, A.V., Nikolaevskiy, V.N., and Urdukhanov, R.I., The method for developing a flooded oil reservoir, USSR Inventor’s Certificate no. SU159081, 1988, Byull. Izobret., 1990, no. 36.

  • Azcarate, J.E.M., et al., Detection and Appraisal of Gas Deposits using Seismic Registers, Madrid, 2008.

    Google Scholar 

  • Beresnev, I.A., Mitlin, V.S., and Nikolaevskiy, V.N., The role of the coefficient of nonlinearity in the excitation of the dominant seismic frequencies, Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 5.

    Google Scholar 

  • Biot, M.A., Theory of propagation of elastic waves in a fluid saturated porous solid: 1. Low-frequency range, J. Acoust. Soc. Am., 1956, vol. 28, pp. 168–178.

    Article  Google Scholar 

  • Cox, S.M. and Matthews, P.C., Pattern formation in the damped Nikolaevskiy equation, Phys. Rev. E, 2007, vol. 76, 056202.

    Article  Google Scholar 

  • Dangel, S., et al., Phenomenology of tremor-like signals observed over hydrocarbon reservoirs, J. Volcanol. Geotherm. Res., 2003, vol. 128, pp. 135–158.

    Article  Google Scholar 

  • Deresiewic, Z.H., The effect of boundaries on wave propagation in a liquid-filled porous solid: 4, Bull. Seismol. Soc. Am., 1962, vol. 52, no. 3.

    Google Scholar 

  • Dunin, S.Z., Mikhailov, D.N., and Nikolaevskiy, V.N., Compression waves in partially saturated porous media, Prikl. Mat. Mekh., 2006, no. 5, pp. 282–308.

    Google Scholar 

  • Edelman, I.Ya., Surface waves in porous media, Izv., Phys. Solid Earth, 2002, vol. 38, no. 1, pp. 72–79.

    Google Scholar 

  • Frehner, M., Steeb, H., and Schmalholz, S.M., Wave velocity dispersion and attenuation in media exhibiting internal oscillations, in Wave Propagation in Materials for Modern Applications, INTECH (Croatia), 2010, pp. 455–476.

    Google Scholar 

  • Frenkel’, Ya.I., To the theory of seismic and seismoelectric phenomena in wet soils, Izv. Akad. Nauk SSSR, Ser. Geograf. Geofiz., 1944, vol. 8, no. 4.

    Google Scholar 

  • Goloshubin, G., Korneev, V., et al., Reservoir imaging using low frequencies of seismic reflections, Leading Edge, 2006, pp. 527–531.

    Google Scholar 

  • Gorbunov, V.E., O svoistvakh smesei flyuidov. Ser. Razrabotka i ekspluatatsiya gazovykh i gazokondensatnykh mestorozhdenii (On the Properties of Fluid Mixtures. Ser. Development and Operation of the Gas and Gas Condensate Fields), Moscow: VNIIEgazprom, 1990.

    Google Scholar 

  • Graf, R., Schmalholz, S., Podladchikov, Y., and Saenger, E., Passive low frequency spectral analysis: exploring a new field in geophysics, World Oil, 2007, vol. 228, pp. 47–52.

    Google Scholar 

  • Holzner, R., Eschle, P., Frehner, M., et al., Interpretation of hydrocarbon microtremors as nonlinear oscillations driven by oceanic background waves, SEG Technical Program Expanded Abstracts 2006, New Orleans, 2006, pp. 2294–2298.

    Chapter  Google Scholar 

  • Honkura, Y., Matsushima, M., Oshiman, N., et al., Small electric and magnetic signals observed before the arrival of seismic wave, Earth Planets Space, 2002, vol. 54, pp. 9–12.

    Article  Google Scholar 

  • Hu, X., Wan, X., and Zhang, H., Seismic dynamics and facies of high-productivity hydrocarbon reservoirs, SEG Technical Program Expanded Abstracts 2011, San Antonio, 2011, pp. 1212–1216.

    Google Scholar 

  • Kolesnikov, Y. and Mednykh, D., Alteration of fluid saturated sand characteristics in the initial stage of stabilization, Near Surface. 10th European Meeting of Environmental and Engineering Geophysics, Utrecht, 2004, P046.

    Google Scholar 

  • Kudryashov, N.A. and Migita, A.V., Periodic structuresdeveloping with account for dispersion in a turbulence model, Fluid Dyn., 2007, vol. 42, no. 3, pp. 463–471.

    Article  Google Scholar 

  • Kuznetsov, O.L., Grafov, B.M., Suntsov, A.E., and Arutyunov, S.L., ANChAR technology: on the theory of the method, Geofizika, Special Issue Tekhnologii seismorazvedki II, 2003, pp. 103–107.

    Google Scholar 

  • Kuznetsov, V.V., et al., Acoustic, electromagnetic and ionospheric disturbances during vibroseismic sounding, Geophus. Res. Lett., 1999, vol. 26, no. 13, pp. 2017–2020.

    Article  Google Scholar 

  • Loizou, N., Liu, E., and Chapman, M., AVO analyses and spectral decomposition of seismic data from four wells west of Shetland, United Kingdom, Petrol. Geophys., 2008, vol. 14, pp. 355–368.

    Google Scholar 

  • Murphy, W.F., Acoustic measures water saturation on attenuation in Massilon sandstone and Vycor porous glass, J. Acoust. Soc. Am., 1982, vol. 71, p. 1458.

    Article  Google Scholar 

  • Nikolaevskiy, V.N., Basniev, K.S., Gorbunov, A.T., and Zotov, G.A., Mekhanika nasyshchennykh poristykh sred (Mechanics of Saturated Porous Media), Moscow: Nedra, 1970.

    Google Scholar 

  • Nikolaevskiy, V.N., Vil’ chinskaya, N.A., and Lisin, V.P., Slow seismic waves in sandy marine soils, Okeanologiya, 1985, vol. 25, no. 4, pp. 656–663.

    Google Scholar 

  • Nikolaevskiy, V.N., Nonlinear waves in the soils and fractured rocks, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 1988, no. 6, pp. 31–38.

    Google Scholar 

  • Nikolaevskiy, V.N., Mekhanika neftegazonosnykh gornykh massivov (Mechanics of the Oil-and-Gas-Bearing Rock Massifs), Moscow: Azbuka-2000, 2007.

    Google Scholar 

  • Nikolaevskiy, V.N., Nonlinear evolution of P-waves in viscous-elastic granular saturated media, Trans. Porous Media, 2008, vol. 73, pp. 125–140.

    Article  Google Scholar 

  • Nikolaevskiy, V.N., Sobranie trudov. Geomekhanika. T. 1–3 (Collected Papers. Geomechanics. Vols. 1–3), Moscow–Izhevsk, RKhD, 2010–2012.

    Google Scholar 

  • Nikolaevskiy, V.N., Seismic oscillations and dominant frequrncies of the geological medium, in Aktual’nost’idei G.A. Gamburtseva v geofizike 21 veka (Topicality of G.A. Gamburtsev’s Ideas in Geophysics of the 21th Century), Gliko, A.O, Ed., Moscow: Yanus K, 2013, pp. 218–231.

    Google Scholar 

  • Nikolaevskiy, V.N., Seismic waves changes due to the gas presence in porous rocks, Geofizika, 2014, no. 3, pp. 14–20.

    Google Scholar 

  • Plona, T.J., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett., 1980, vol. 36, pp. 259–261.

    Article  Google Scholar 

  • Rishi, N., Bradley, B., and Saenger, E.H., A statistical approach to ambient field analysis, The 9th Swiss Geoscience Meeting, Zurich, 2011, November 11–13.

    Google Scholar 

  • Saenger, E. Schmalholz, S., et al., A passive seismic survey over a gas field: analysis of low-frequency anomalies, Geophysics, 2009, vol. 74, no. 2, pp. 29–40.

    Article  Google Scholar 

  • Schroot, B.M. and Schüttenhelm, R.T.E., Expressions of shallow gas in the Netherlands North Sea, Netherlands J. Geosci., 2003, vol. 82, no., 1, pp. 91–105.

    Google Scholar 

  • Simbawa, E., Matthews, P.C., and Cox, S.M., Nikolaevskiy equation with dispersion, Phys. Rev. E, 2010, vol. 81, 036220.

    Article  Google Scholar 

  • Swift, J. and Hohenberg, P.C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 1977, vol. 15, pp. 319–328.

    Article  Google Scholar 

  • Tanaka, D., Chemical turbulence equivalent to Nikolaevskiy turbulence, Phys. Rev. E, 2004, vol. 70, 015202(R).

    Article  Google Scholar 

  • Tribel’skii, M.I., Short-wavelength instability and transition to chaos in distributed systems with additional symmetry, Phys. Usp., 1997, vol. 40, no. 2, pp. 159–180.

    Article  Google Scholar 

  • Tribelsky, M.I., Patterns in dissipative systems with weakly broken continuous symmetry, Phys. Rev. E, 2008, vol. 77, 035202.

    Article  Google Scholar 

  • Wittenberg, R.W. and Poon, K.F., Anomalous scaling on a spatiotemporally chaotic attractor, Phys. Rev. E, 2009, vol. 79, 056225.

    Article  Google Scholar 

  • Vil’chinskaya, N.A. and Nikolaevskiy, V.N., Acoustic emission and the spectrum of seismic signals, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1984, no. 5, pp. 91–100.

    Google Scholar 

  • Vil’chinskaya, N.A., Lisin, V.P., and Nikolaevskiy, V.N., Slow seismic waves in the marine sandy soils, Okeanologiya, 1985, vol. 25, no. 4, pp. 656–663.

    Google Scholar 

  • Zwikker, C. and Kosten, C.W., Sound Absorbing Materials, New York: Elsevier, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nikolaevskiy.

Additional information

Original Russian Text © V.N. Nikolaevskiy, 2016, published in Fizika Zemli, 2016, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaevskiy, V.N. A real P-wave and its dependence on the presence of gas. Izv., Phys. Solid Earth 52, 1–13 (2016). https://doi.org/10.1134/S1069351315060075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351315060075

Keywords

Navigation