Abstract
The relationship between climatic parameters and the Earth’s magnetic field has been reported by many authors. However, the absence of a feasible mechanism accounting for this relationship has impeded progress in this research field. Based on the instrumental observations, we reveal the spatiotemporal relationship between the key structures in the geomagnetic field, surface air temperature and pressure fields, ozone, and the specific humidity near the tropopause. As one of the probable explanations of these correlations, we suggest the following chain of the causal relations: (1) modulation of the intensity and penetration depth of energetic particles (galactic cosmic rays (GCRs)) in the Earth’s atmosphere by the geomagnetic field; (2) the distortion of the ozone density near the tropopause under the action of GCRs; (3) the change in temperature near the tropopause due to the high absorbing capacity of ozone; (4) the adjustment of the extra-tropical upper tropospheric static stability and, consequently, specific humidity, to the modified tropopause temperature; and (5) the change in the surface air temperature due to the increase/decrease of the water vapor greenhouse effect.
This is a preview of subscription content, access via your institution.
References
Bakhmutov, V.G., Martazinova, V.F., Ivanova, E.K., and Mel’nik, G.V., Changes in the main magnetic field and climate in the 20th century, Dopovidi Natsional’noï Akademiï nauk Ukraïni, Nauki pro Zemlyu, 2011, no. 7, pp. 90–94.
Bakhmutov, V.G., Martazinova, V.F., Kilifarska, N.A., Mel’nik, G.V., and Ivanova, E.K., Linkage between the changes in climate and geomagnetic field: 1. Spatiotemporal structure of the magnetic field of the Earth and climate in the 20th century, Geofiz. Zh., 2014, no. 1, pp. 81–104.
Banks, P.M. and Kockarts, G., Aeronomy, New York: Academic, 1973.
Bard, E. and Delaygue, G., Comment on “Are there connections between the Earth’s magnetic field and climate?” by Courtillot V., Gallet Y., Le Mouël J.-L., Fluteau F., Genevey A., EPSL 253, 328, 2007, Earth Planet. Sci. Lett., 2008, vol. 265, nos. 1–2, pp. 302–307.
Bazilevskaya, G.A., Usoskin, I.G., Flückige, E.O., Harrison, R.G., Desorgher, L., Bütikofer, R., Krainev, M.B., Makhmutov, V.S., Stozhkov, V.I., Svirzhevskaya, A.K., Svirzhevsky, N.S., and Kovaltsov, G.A., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev., 2008, vol. 137, pp. 149–173.
Brasseur, G. and Solomon, S., Aeronomy of the Middle Stratosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed., Dordrecht: Springer, 2005.
Bronnimman, S., Sticher, A., Griesser, T., Fischer, A.M., Grant, A., Ewen, T., Zhou, T., Schraner, M., Rozanov, E., and Peter, T., Variability of large-scale atmospheric circulation indices for the Northern hemisphere during the past 100 years, Meteorol. Zeitschr., 2009, vol. 18, no. 4, pp. 379–396.
Courtillot, V., Gallet, Y., Le Mouel, J.L., Fluteau, F., and Genevey, A., Are there connections between Earth’s magnetic field and climate?, Earth Planet. Sci. Lett., 2007, vol. 253, pp. 328–339.
Courtillot, V., Gallet, Y., Le Mouel, J.L., Fluteau, F., and Genevey, A., Response to comment on “Are there connections between Earth’s magnetic field and climate?, Earth Planet. Sci. Lett., 253, 328–339, 2007” by Bard, E., and Delaygue, M., Earth Planet. Sci. Lett., in press, 2007, Earth Planet. Sci. Lett., 2008, vol. 265, pp. 308–311.
de Foster, P.M. and Shine, K., Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res., 1997, vol. 102, no. D9, pp. 10841–10855.
de Forster, P.M. and Tourpali, K., Effect of tropopause height changes on the calculation of ozone trends and their radiative forcing, J. Geophys. Res., 2001, vol. 106, no. D11, pp. 12241–12251.
Forbush, S.E., Time variations of cosmic rays, in Cosmic Rays, the Sun and Geomagnetism: The Works of Scott E. Forbush, AGU Special Publication Series, vol. 37, Van Allen, J.A., Ed., Washington: American Geophysical Union, 1993, pp. 323–411.
Gauss, M., Myhre, G., Isaksen, I.S.A., Grewe, V., Pitari, G., Wild, O., Collins, W.J., Dentener, F.J., Ellingsen, K., Gohar, L.K., Hauglustaine, D.A., Iachetti, D., Lamarque, F., Mancini, E., Mickley, L.J., et al., Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere, Atmos. Chem. Phys., 2006, no. 6, pp. 575–599.
Glassmeier, K.-H., Neuhaus, A., and Vogt, J., Space Climatology, invited presentation at the Alpach Summer School, 2002.
Hallegatte, S., Lahellec, A., and Grandpeix, J.Y., An elicitation of the dynamic nature of water vapor feedback in climate change using a 1D model, J. Atmos. Sci., 2006, vol. 63, pp. 1878–1894.
Inamdar, A.K., Ramanathan, V., and Loeb, N.G., Satellite observations of the water vapor greenhouse effect and column longwave cooling rates: relative roles of the continuum and vibration-rotation to pure rotation bands, J. Geophys. Res., 2004, vol. 109, D06104. doi 10.1029/2003JD003980
IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis, Solomon, S. et al., Eds., Cambridge: Cambridge Univ. Press, 2007.
Jackman, Ch., Frederick, J.E., and Stolarski, R.S., Production of odd nitrogen in the stratosphere and mesosphere: an inter-comparison of source strengths, J. Geophys. Res., 1980, vol. 85, no. C12, pp. 7495–7505.
Jonson, J.E., Sudnet, J.K., and Tarrason, L., Model calculations of present and future levels of ozone and ozone precursors with a global and regional model, Atmos. Environ., 2001, vol. 35, pp. 525–537.
Kilifarska, N.A., Climate sensitivity to the lower stratospheric ozone variations, J. Atmos. Sol.–Terr. Phys., 2012a, vols. 90–91, pp. 9–14.
Kilifarska, N.A., Mechanism of lower stratospheric ozone influence on climate, Int. Rev. Phys., 2012b, vol. 6, no. 3, pp. 279–289.
Kilifarska, N.A., Ozone as a mediator of galactic cosmic rays’ influence on climate, Sun Geosphere, 2012c, vol. 7, no. 1, pp. 97–102.
Kilifarska, N.A., An autocatalytic cycle for ozone production in the lower stratosphere initiated by galactic cosmic rays, Comptes rendus de l’Acad’emie bulgare des Sciences, 2013, vol. 66, no. 2, pp. 243–252.
Kirkby, J., Cosmic rays and climate, Surv. Geophys., 2007, vol. 28, pp. 333–375.
Kovaltsov, G.A. and Usoskin, I.G., Regional cosmic ray induced ionization and geomagnetic field changes, Adv. Geosci., 2007, vol. 13, pp. 31–35.
Krivolutsky, A.A. and Repnev, A.I., Impact of space energetic particles on the Earth’s atmosphere (a review), Geomagn. Aeron., 2012, vol. 52, no. 6, pp. 685–716.
Kuznetsova, N.D. and Kuznetsov, V.V., Implications of cosmic radiation and secular geomagnetic variations for the evolution of life, Vestn. Sev.-Vost. Nauch. Tsentra DVO RAN, 2012, no. 2, pp. 11–18.
Lantos, P., Predictions of galactic cosmic ray intensity deduced from that of sunspot number, Sol. Phys., 2005, vol. 229, pp. 373–385.
Larin, I.K. and Tal’roze, V.L., The conditions and probable intensity of the impact of the charged particles on ozone depletion in the stratosphere, Dokl. Akad. Nauk SSSR, 1977, no. 3, pp. 410–413.
Lindzen, R.S., Some coolness concerning global warming, Bull. Am. Meteorol. Soc, 1990, vol. 7, pp. 277–288.
Loginov, V.F., Global’nye i regional’nye izmeneniya klimata: prichiny i sledstviya (Global and Regional Climate Changes: Causes and Consequences), Minsk: TetraSistems, 2008.
Markov, M.N. and Mustel’, E.P., Spatiotemporal effects of solar-terrestrial linkage in the troposphere and thermosphere, Astron. Zh., 1983, vol. 60, pp. 417–421.
Martazinova, V.F. and Ivanova, E.K., Characteristic features of the synoptic processes of different probability at the end of the 20th and beginning of the 21st centuries, in Global’nye i regional’nye izmeneniya klimata (Global and Regional Changes in Climate), Shestopalov, V.M., Loginov, V.F., Osadchii, V.I., et al., Eds., Kyiv: Nika-Tsentr, 2011, pp. 86–95.
McCracken, K.G. and Beer, J., Long-term changes in the cosmic ray intensity at Earth, 1428-2005, J. Geophys. Res., 2007, vol. 112, A10101. doi 10.1029/2006JA012117
Mende, W. and Stellmacher, R., Solar variability and the search for corresponding climate signals, Space Sci. Rev., 2000, vol. 94, pp. 295–306.
Miksvsky, J. and Raidl, A., Testing for nonlinearity in European climatic time series by the method of surrogate data, Theor. Appl. Climatol., 2006, vol. 83, pp. 21–33.
Miyahara, H., Yokoyama, Y., and Masuda, K., Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity, Earth Planet. Sci. Lett., 2008, vol. 272, pp. 290–295.
Mote, P.W., Rosenlof, Kh., Holton, J.R., Harwood, R.S., and Waters, J.W., An atmospheric type recorder: the imprint of tropopause temperatures on stratospheric water vapour, J. Geophys. Res., 1996, vol. 101, pp. 3989–4006.
Mursula, K., Usoskin, I.G., and Kovaltsov, G.A., Reconstructing the long-term cosmic ray intensity: linear relations do not work, Ann. Geophys., 2003, vol. 21, pp. 863–867.
Petrova, G.N., Nechaeva, T.B., and Pospelova, G.A., Kharakter izmeneniya geomagnitnogo polya v proshlom (The Character of Changes in the Geomagnetic Field in the Past), Moscow: Nauka, 1992.
Pinto, O., Jr., Gonzalez, W.D., Pinto, I.R.C., Gonzalez, I.L.C., and Mendes, O., Jr., The South Atlantic Magnetic Anomaly: three decades of research, J. Atmos. Terr. Phys., 1992, vol. 54, pp. 1129–1134.
Rakobol’skaya, I.V., Yadernaya fizika (Nuclear Physics), Moscow: MGU, 1971.
Ramanatan, V., Callis, L.B., and Boucher, R.E., Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric ozone and nitrogen dioxide, J. Atmos. Sci., 1976, vol. 33, pp. 1092–1112.
Randel, W.J., Wu, F., Gettelman, A., Russel, III J.M., Zavodny, J.M., and Oltmans, S.J., The seasonal variation of water vapour in the lower stratosphere observed in Halogen Occultation Experiment data, J. Geophys. Res., 2001, vol. 106, pp. 14313–14325.
Randel, W.J., Shine, K.P., Austin, J., Barnett, J., Claud, C., Gillett, N.P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D.J., Thompson, D.W.J., et al., An update of observed stratospheric temperature trends, J. Geophys. Res., 2009, vol. 114, D02107. doi 10.1029/2008JD010421
Rozelot, J.P., Pireaux, S., Lefebvre, S., and Ajabshirizadeh, A., The Sun asphericities: astrophysical relevance. arXiv:astro-ph/0403382 v3 (April 1, 2004).
Schmidt, G.A., Ruedy, R.A., Miller, R.L., and Lacis, A.A., Attribution of the present-day total greenhouse effect, J. Geophys. Res., 2010, vol. 115, D20106. doi 10.1029/2010JD014287
Seidel, D.J. and Randel, W.J., Variability and trends in the global tropopause estimated from radiosonde data, J. Geophys. Res., 2006, vol. 111, D21101. doi 10.1029/2006JD007363
Shea, M.A. and Smart, D.F., Preliminary study of cosmic rays, geomagnetic field changes and possible climate changes, Adv. Space Res., 2004, vol. 34, pp. 420–425.
Spencer, R.W. and Braswell, W.D., How dry is the tropical free troposphere? Implications for global warming theory, Bull. Am. Meteorol. Soc., 1997, vol. 78, no. 6, pp. 1097–1106.
Stuber, N., Sausen, R., and Ponater, M., Stratosphere adjusted radiative forcing calculations in a comprehensive climate model, Theor. Appl. Climatol., 2001, vol. 68, pp. 125–135.
Tomasi, C., Cacciari, A., Vitale, V., Lupi, A., Lanconelli, C., Pellegrini, A., and Grigioni, P., Mean vertical profiles of temperature and absolute humidity from a 12year radiosounding data set at Terra Nova Bay (Antarctica), Atmos. Res., 2004, vol. 71, pp. 139–169.
Usoskin, I.G., Schussler, M., Solanki, S.K., and Mursula, K., Solar activity, cosmic rays, and Earth’s temperature: a millennium-scale comparison, J. Geophys. Res., 2005, vol. 110, A10102. doi 10.1029/2004JA010946
Van Allen J.A., Dynamics, composition and origin of the geomagnetically-trapped corpuscular radiation, an Invited Discourse at the 11-th General Assembly of International Astronomical Union, Trans. Int. Astron. Union,a 1962, XIB, pp. 99–136.
Velinov, P.I.Y., Mateev, L., and Kilifarska, N., 3-D model for cosmic ray planetary ionisation in the middle atmosphere, Ann. Geophys., 2005, vol. 23, pp. 3043–3046.
Vinogradov, P.S., Larin, I.K., Poroikova, A.I., and Tal’roze, V.L., To the mechanism of cosmic rays influence on the ozonosphere of the Earth, in Sovremennoe sostoyanie issledovanii ozonosfery v SSSR. Tr. Vsesoyuznogo soveshchaniya po ozonu (The State of the Art in the Studies of the Ozonosphere in the USSR. Proc. All-Russia Conference on Ozone), Moscow: Gidrometeoizdat, 1980, pp. 123–130.
Wang, W-Ch., Pinto, J.P., and Yunk, Y.L., Climatic effect due to the halogenated compound in the Earth atmosphere, Atmos. Sci., 1980, vol. 37, pp. 333–338.
Wang, W-Ch., Zhuang, Y-Ch., and Bojkov, R., Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the Northern Hemisphere, Geophys. Rev. Lett., 1993, vol. 20, no. 15, pp. 1567–1570.
Wirth, V., Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature, J. Geophys. Res., 1993, vol. 98, pp. 8873–8882.
WMO, Scientific Assessment of Ozone Depletion, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report no. 50, Geneva, 2006.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © N.A. Kilifarska, V.G. Bakhmutov, G.V. Mel’nik, 2015, published in Fizika Zemli, 2015, No. 5, pp. 160–178.
Rights and permissions
About this article
Cite this article
Kilifarska, N.A., Bakhmutov, V.G. & Mel’nik, G.V. Geomagnetic field and climate: Causal relations with some atmospheric variables. Izv., Phys. Solid Earth 51, 768–785 (2015). https://doi.org/10.1134/S1069351315050067
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1069351315050067
Keywords
- Ozone
- Solid Earth
- Specific Humidity
- Total Ozone
- Lower Stratosphere