Skip to main content

Geomagnetic field and climate: Causal relations with some atmospheric variables

Abstract

The relationship between climatic parameters and the Earth’s magnetic field has been reported by many authors. However, the absence of a feasible mechanism accounting for this relationship has impeded progress in this research field. Based on the instrumental observations, we reveal the spatiotemporal relationship between the key structures in the geomagnetic field, surface air temperature and pressure fields, ozone, and the specific humidity near the tropopause. As one of the probable explanations of these correlations, we suggest the following chain of the causal relations: (1) modulation of the intensity and penetration depth of energetic particles (galactic cosmic rays (GCRs)) in the Earth’s atmosphere by the geomagnetic field; (2) the distortion of the ozone density near the tropopause under the action of GCRs; (3) the change in temperature near the tropopause due to the high absorbing capacity of ozone; (4) the adjustment of the extra-tropical upper tropospheric static stability and, consequently, specific humidity, to the modified tropopause temperature; and (5) the change in the surface air temperature due to the increase/decrease of the water vapor greenhouse effect.

This is a preview of subscription content, access via your institution.

References

  • Bakhmutov, V.G., Martazinova, V.F., Ivanova, E.K., and Mel’nik, G.V., Changes in the main magnetic field and climate in the 20th century, Dopovidi Natsional’noï Akademiï nauk Ukraïni, Nauki pro Zemlyu, 2011, no. 7, pp. 90–94.

    Google Scholar 

  • Bakhmutov, V.G., Martazinova, V.F., Kilifarska, N.A., Mel’nik, G.V., and Ivanova, E.K., Linkage between the changes in climate and geomagnetic field: 1. Spatiotemporal structure of the magnetic field of the Earth and climate in the 20th century, Geofiz. Zh., 2014, no. 1, pp. 81–104.

    Google Scholar 

  • Banks, P.M. and Kockarts, G., Aeronomy, New York: Academic, 1973.

    Google Scholar 

  • Bard, E. and Delaygue, G., Comment on “Are there connections between the Earth’s magnetic field and climate?” by Courtillot V., Gallet Y., Le Mouël J.-L., Fluteau F., Genevey A., EPSL 253, 328, 2007, Earth Planet. Sci. Lett., 2008, vol. 265, nos. 1–2, pp. 302–307.

    Article  Google Scholar 

  • Bazilevskaya, G.A., Usoskin, I.G., Flückige, E.O., Harrison, R.G., Desorgher, L., Bütikofer, R., Krainev, M.B., Makhmutov, V.S., Stozhkov, V.I., Svirzhevskaya, A.K., Svirzhevsky, N.S., and Kovaltsov, G.A., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev., 2008, vol. 137, pp. 149–173.

    Article  Google Scholar 

  • Brasseur, G. and Solomon, S., Aeronomy of the Middle Stratosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed., Dordrecht: Springer, 2005.

    Google Scholar 

  • Bronnimman, S., Sticher, A., Griesser, T., Fischer, A.M., Grant, A., Ewen, T., Zhou, T., Schraner, M., Rozanov, E., and Peter, T., Variability of large-scale atmospheric circulation indices for the Northern hemisphere during the past 100 years, Meteorol. Zeitschr., 2009, vol. 18, no. 4, pp. 379–396.

    Article  Google Scholar 

  • Courtillot, V., Gallet, Y., Le Mouel, J.L., Fluteau, F., and Genevey, A., Are there connections between Earth’s magnetic field and climate?, Earth Planet. Sci. Lett., 2007, vol. 253, pp. 328–339.

    Article  Google Scholar 

  • Courtillot, V., Gallet, Y., Le Mouel, J.L., Fluteau, F., and Genevey, A., Response to comment on “Are there connections between Earth’s magnetic field and climate?, Earth Planet. Sci. Lett., 253, 328–339, 2007” by Bard, E., and Delaygue, M., Earth Planet. Sci. Lett., in press, 2007, Earth Planet. Sci. Lett., 2008, vol. 265, pp. 308–311.

    Article  Google Scholar 

  • de Foster, P.M. and Shine, K., Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res., 1997, vol. 102, no. D9, pp. 10841–10855.

    Article  Google Scholar 

  • de Forster, P.M. and Tourpali, K., Effect of tropopause height changes on the calculation of ozone trends and their radiative forcing, J. Geophys. Res., 2001, vol. 106, no. D11, pp. 12241–12251.

    Article  Google Scholar 

  • Forbush, S.E., Time variations of cosmic rays, in Cosmic Rays, the Sun and Geomagnetism: The Works of Scott E. Forbush, AGU Special Publication Series, vol. 37, Van Allen, J.A., Ed., Washington: American Geophysical Union, 1993, pp. 323–411.

    Google Scholar 

  • Gauss, M., Myhre, G., Isaksen, I.S.A., Grewe, V., Pitari, G., Wild, O., Collins, W.J., Dentener, F.J., Ellingsen, K., Gohar, L.K., Hauglustaine, D.A., Iachetti, D., Lamarque, F., Mancini, E., Mickley, L.J., et al., Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere, Atmos. Chem. Phys., 2006, no. 6, pp. 575–599.

    Article  Google Scholar 

  • Glassmeier, K.-H., Neuhaus, A., and Vogt, J., Space Climatology, invited presentation at the Alpach Summer School, 2002.

    Google Scholar 

  • Hallegatte, S., Lahellec, A., and Grandpeix, J.Y., An elicitation of the dynamic nature of water vapor feedback in climate change using a 1D model, J. Atmos. Sci., 2006, vol. 63, pp. 1878–1894.

    Article  Google Scholar 

  • Inamdar, A.K., Ramanathan, V., and Loeb, N.G., Satellite observations of the water vapor greenhouse effect and column longwave cooling rates: relative roles of the continuum and vibration-rotation to pure rotation bands, J. Geophys. Res., 2004, vol. 109, D06104. doi 10.1029/2003JD003980

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis, Solomon, S. et al., Eds., Cambridge: Cambridge Univ. Press, 2007.

  • Jackman, Ch., Frederick, J.E., and Stolarski, R.S., Production of odd nitrogen in the stratosphere and mesosphere: an inter-comparison of source strengths, J. Geophys. Res., 1980, vol. 85, no. C12, pp. 7495–7505.

    Article  Google Scholar 

  • Jonson, J.E., Sudnet, J.K., and Tarrason, L., Model calculations of present and future levels of ozone and ozone precursors with a global and regional model, Atmos. Environ., 2001, vol. 35, pp. 525–537.

    Article  Google Scholar 

  • Kilifarska, N.A., Climate sensitivity to the lower stratospheric ozone variations, J. Atmos. Sol.–Terr. Phys., 2012a, vols. 90–91, pp. 9–14.

    Article  Google Scholar 

  • Kilifarska, N.A., Mechanism of lower stratospheric ozone influence on climate, Int. Rev. Phys., 2012b, vol. 6, no. 3, pp. 279–289.

    Google Scholar 

  • Kilifarska, N.A., Ozone as a mediator of galactic cosmic rays’ influence on climate, Sun Geosphere, 2012c, vol. 7, no. 1, pp. 97–102.

    Google Scholar 

  • Kilifarska, N.A., An autocatalytic cycle for ozone production in the lower stratosphere initiated by galactic cosmic rays, Comptes rendus de l’Acad’emie bulgare des Sciences, 2013, vol. 66, no. 2, pp. 243–252.

    Google Scholar 

  • Kirkby, J., Cosmic rays and climate, Surv. Geophys., 2007, vol. 28, pp. 333–375.

    Article  Google Scholar 

  • Kovaltsov, G.A. and Usoskin, I.G., Regional cosmic ray induced ionization and geomagnetic field changes, Adv. Geosci., 2007, vol. 13, pp. 31–35.

    Article  Google Scholar 

  • Krivolutsky, A.A. and Repnev, A.I., Impact of space energetic particles on the Earth’s atmosphere (a review), Geomagn. Aeron., 2012, vol. 52, no. 6, pp. 685–716.

    Article  Google Scholar 

  • Kuznetsova, N.D. and Kuznetsov, V.V., Implications of cosmic radiation and secular geomagnetic variations for the evolution of life, Vestn. Sev.-Vost. Nauch. Tsentra DVO RAN, 2012, no. 2, pp. 11–18.

    Google Scholar 

  • Lantos, P., Predictions of galactic cosmic ray intensity deduced from that of sunspot number, Sol. Phys., 2005, vol. 229, pp. 373–385.

    Article  Google Scholar 

  • Larin, I.K. and Tal’roze, V.L., The conditions and probable intensity of the impact of the charged particles on ozone depletion in the stratosphere, Dokl. Akad. Nauk SSSR, 1977, no. 3, pp. 410–413.

    Google Scholar 

  • Lindzen, R.S., Some coolness concerning global warming, Bull. Am. Meteorol. Soc, 1990, vol. 7, pp. 277–288.

    Google Scholar 

  • Loginov, V.F., Global’nye i regional’nye izmeneniya klimata: prichiny i sledstviya (Global and Regional Climate Changes: Causes and Consequences), Minsk: TetraSistems, 2008.

    Google Scholar 

  • Markov, M.N. and Mustel’, E.P., Spatiotemporal effects of solar-terrestrial linkage in the troposphere and thermosphere, Astron. Zh., 1983, vol. 60, pp. 417–421.

    Google Scholar 

  • Martazinova, V.F. and Ivanova, E.K., Characteristic features of the synoptic processes of different probability at the end of the 20th and beginning of the 21st centuries, in Global’nye i regional’nye izmeneniya klimata (Global and Regional Changes in Climate), Shestopalov, V.M., Loginov, V.F., Osadchii, V.I., et al., Eds., Kyiv: Nika-Tsentr, 2011, pp. 86–95.

    Google Scholar 

  • McCracken, K.G. and Beer, J., Long-term changes in the cosmic ray intensity at Earth, 1428-2005, J. Geophys. Res., 2007, vol. 112, A10101. doi 10.1029/2006JA012117

    Article  Google Scholar 

  • Mende, W. and Stellmacher, R., Solar variability and the search for corresponding climate signals, Space Sci. Rev., 2000, vol. 94, pp. 295–306.

    Article  Google Scholar 

  • Miksvsky, J. and Raidl, A., Testing for nonlinearity in European climatic time series by the method of surrogate data, Theor. Appl. Climatol., 2006, vol. 83, pp. 21–33.

    Article  Google Scholar 

  • Miyahara, H., Yokoyama, Y., and Masuda, K., Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity, Earth Planet. Sci. Lett., 2008, vol. 272, pp. 290–295.

    Article  Google Scholar 

  • Mote, P.W., Rosenlof, Kh., Holton, J.R., Harwood, R.S., and Waters, J.W., An atmospheric type recorder: the imprint of tropopause temperatures on stratospheric water vapour, J. Geophys. Res., 1996, vol. 101, pp. 3989–4006.

    Article  Google Scholar 

  • Mursula, K., Usoskin, I.G., and Kovaltsov, G.A., Reconstructing the long-term cosmic ray intensity: linear relations do not work, Ann. Geophys., 2003, vol. 21, pp. 863–867.

    Article  Google Scholar 

  • Petrova, G.N., Nechaeva, T.B., and Pospelova, G.A., Kharakter izmeneniya geomagnitnogo polya v proshlom (The Character of Changes in the Geomagnetic Field in the Past), Moscow: Nauka, 1992.

    Google Scholar 

  • Pinto, O., Jr., Gonzalez, W.D., Pinto, I.R.C., Gonzalez, I.L.C., and Mendes, O., Jr., The South Atlantic Magnetic Anomaly: three decades of research, J. Atmos. Terr. Phys., 1992, vol. 54, pp. 1129–1134.

    Article  Google Scholar 

  • Rakobol’skaya, I.V., Yadernaya fizika (Nuclear Physics), Moscow: MGU, 1971.

    Google Scholar 

  • Ramanatan, V., Callis, L.B., and Boucher, R.E., Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric ozone and nitrogen dioxide, J. Atmos. Sci., 1976, vol. 33, pp. 1092–1112.

    Article  Google Scholar 

  • Randel, W.J., Wu, F., Gettelman, A., Russel, III J.M., Zavodny, J.M., and Oltmans, S.J., The seasonal variation of water vapour in the lower stratosphere observed in Halogen Occultation Experiment data, J. Geophys. Res., 2001, vol. 106, pp. 14313–14325.

    Article  Google Scholar 

  • Randel, W.J., Shine, K.P., Austin, J., Barnett, J., Claud, C., Gillett, N.P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D.J., Thompson, D.W.J., et al., An update of observed stratospheric temperature trends, J. Geophys. Res., 2009, vol. 114, D02107. doi 10.1029/2008JD010421

  • Rozelot, J.P., Pireaux, S., Lefebvre, S., and Ajabshirizadeh, A., The Sun asphericities: astrophysical relevance. arXiv:astro-ph/0403382 v3 (April 1, 2004).

    Google Scholar 

  • Schmidt, G.A., Ruedy, R.A., Miller, R.L., and Lacis, A.A., Attribution of the present-day total greenhouse effect, J. Geophys. Res., 2010, vol. 115, D20106. doi 10.1029/2010JD014287

    Article  Google Scholar 

  • Seidel, D.J. and Randel, W.J., Variability and trends in the global tropopause estimated from radiosonde data, J. Geophys. Res., 2006, vol. 111, D21101. doi 10.1029/2006JD007363

  • Shea, M.A. and Smart, D.F., Preliminary study of cosmic rays, geomagnetic field changes and possible climate changes, Adv. Space Res., 2004, vol. 34, pp. 420–425.

    Article  Google Scholar 

  • Spencer, R.W. and Braswell, W.D., How dry is the tropical free troposphere? Implications for global warming theory, Bull. Am. Meteorol. Soc., 1997, vol. 78, no. 6, pp. 1097–1106.

    Article  Google Scholar 

  • Stuber, N., Sausen, R., and Ponater, M., Stratosphere adjusted radiative forcing calculations in a comprehensive climate model, Theor. Appl. Climatol., 2001, vol. 68, pp. 125–135.

    Article  Google Scholar 

  • Tomasi, C., Cacciari, A., Vitale, V., Lupi, A., Lanconelli, C., Pellegrini, A., and Grigioni, P., Mean vertical profiles of temperature and absolute humidity from a 12year radiosounding data set at Terra Nova Bay (Antarctica), Atmos. Res., 2004, vol. 71, pp. 139–169.

    Article  Google Scholar 

  • Usoskin, I.G., Schussler, M., Solanki, S.K., and Mursula, K., Solar activity, cosmic rays, and Earth’s temperature: a millennium-scale comparison, J. Geophys. Res., 2005, vol. 110, A10102. doi 10.1029/2004JA010946

  • Van Allen J.A., Dynamics, composition and origin of the geomagnetically-trapped corpuscular radiation, an Invited Discourse at the 11-th General Assembly of International Astronomical Union, Trans. Int. Astron. Union,a 1962, XIB, pp. 99–136.

    Google Scholar 

  • Velinov, P.I.Y., Mateev, L., and Kilifarska, N., 3-D model for cosmic ray planetary ionisation in the middle atmosphere, Ann. Geophys., 2005, vol. 23, pp. 3043–3046.

    Article  Google Scholar 

  • Vinogradov, P.S., Larin, I.K., Poroikova, A.I., and Tal’roze, V.L., To the mechanism of cosmic rays influence on the ozonosphere of the Earth, in Sovremennoe sostoyanie issledovanii ozonosfery v SSSR. Tr. Vsesoyuznogo soveshchaniya po ozonu (The State of the Art in the Studies of the Ozonosphere in the USSR. Proc. All-Russia Conference on Ozone), Moscow: Gidrometeoizdat, 1980, pp. 123–130.

    Google Scholar 

  • Wang, W-Ch., Pinto, J.P., and Yunk, Y.L., Climatic effect due to the halogenated compound in the Earth atmosphere, Atmos. Sci., 1980, vol. 37, pp. 333–338.

    Article  Google Scholar 

  • Wang, W-Ch., Zhuang, Y-Ch., and Bojkov, R., Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the Northern Hemisphere, Geophys. Rev. Lett., 1993, vol. 20, no. 15, pp. 1567–1570.

    Article  Google Scholar 

  • Wirth, V., Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature, J. Geophys. Res., 1993, vol. 98, pp. 8873–8882.

    Article  Google Scholar 

  • WMO, Scientific Assessment of Ozone Depletion, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report no. 50, Geneva, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kilifarska.

Additional information

Original Russian Text © N.A. Kilifarska, V.G. Bakhmutov, G.V. Mel’nik, 2015, published in Fizika Zemli, 2015, No. 5, pp. 160–178.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kilifarska, N.A., Bakhmutov, V.G. & Mel’nik, G.V. Geomagnetic field and climate: Causal relations with some atmospheric variables. Izv., Phys. Solid Earth 51, 768–785 (2015). https://doi.org/10.1134/S1069351315050067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351315050067

Keywords

  • Ozone
  • Solid Earth
  • Specific Humidity
  • Total Ozone
  • Lower Stratosphere