Skip to main content
Log in

Modeling the implications of chemical transformations for the magnetic properties of a system of titanomagnetite nanoparticles

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Implications of the breakdown and oxidation processes for the magnetic properties of finegrained titanomagnetites are theoretically studied in the model of two-phase nanoparticle system. It is shown that the decomposition of titanomagnetites is accompanied by the increase in the blocking temperature, coercive force, spontaneous saturation magnetization, and chemical magnetization, whereas the remanent chemical magnetization behaves nonmonotonically and may undergo self-reversal. The single-phase oxidation of titanomagnetites reduces the coercive force and saturation magnetization and thus leads to the growth in chemical magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afremov, L.L. and Kharitonskii, P.V, On magnetostatic interaction in the assemblage of growing single-domain grains, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 2, pp. 101–105.

    Google Scholar 

  • Afremov, L.L. and Panov, A.V., Theory of magnetization of two-phase superparamagnetic particles: II. Modeling of magnetization processes, Phys. Met. Metallography, 1996, vol. 82, no. 5, pp. 445–448.

    Google Scholar 

  • Afremov L.L. and Ilyushin I.G., Effect of mechanical stress on magnetic states and hysteresis characteristics of a twophase nanoparticles system, J. Nanomaterials, 2013, vol. 2013, p. 15, Article ID 687613.

    Article  Google Scholar 

  • Artemova, T.G. and Gapeev, A.K., On exsolution in the magnetite–ulvospinel solid solution series, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 12, pp. 82–87.

    Google Scholar 

  • Belokon’, V.I., On the relationship between some types of remanent magnetization in the assemblage of the singledomain interacting particles, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1985, no. 2, pp. 55–64.

    Google Scholar 

  • Belokon’, V.I., Afremov, L.L., and Kharitonskii, P.V., Crystallization magnetization in the system of single-domain interacting particles, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 5, pp. 116–119.

    Google Scholar 

  • Butler, R.F., Stable single-domain to superparamagnetic transition during low-temperature oxidation of oceanic basalts, J. Geophys. Res., 1973, vol. 78, no. 29, pp. 6868–6876.

    Article  Google Scholar 

  • Gribov, S.K., The processes of single-phase oxidation and subsequent exsolution of titanomagnetites and their place in the rock magnetism and paleomagnetism, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Schmidt Inst. Phys. Earth, Rus. Akad. Sci., 2004.

    Google Scholar 

  • Johnson, H.P. and Merril, R.T., Magnetic and mineralogical changes associated with low-temperature oxidation of magnetite, J. Geophys. Res., 1972, vol. 77, no. 2, pp. 334–341.

    Article  Google Scholar 

  • Johnson, H.P. and Merril, R.T., Low-temperature oxidation of titanomagnetite and the implication for paleomagnetism, J. Geophys. Res., 1973, vol. 78, no. 23, pp. 4938–4949.

    Article  Google Scholar 

  • Kakol, Z., Sabol, J., and Honig, J.M., Magnetic anisotropy of titanomagnetites Fe, Ti, O4, 0 × 0.55, Phys. Rev., 1991, vol. 44, no. 5, pp. 2198–2204.

    Article  Google Scholar 

  • Markov, G.P. and Shcherbakov, V.P., The model of the acquisition of chemical remanent magnetization during single-phase oxidation of a multidomain grain, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1987, no. 6, pp. 106–112.

    Google Scholar 

  • Marshall, M. and Cox, A., Magnetic changes in pillow basalts due to sea floor weathering, J. Geophys. Res., 1972, vol. 77, no. 32, pp. 6459–6469.

    Article  Google Scholar 

  • Minibaev, R.A., Myasnikov, B.C., and Petrova, G.N., On one case of self-reversal of remanent magnetization, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1966, no. 8, pp. 96–101.

    Google Scholar 

  • Mogensen, F., A ferro-ortho-titanate ore from Södra Ulvön, Geol. Fören. Förh., Stockholm, 1946, vol. 68, pp. 578–588.

    Article  Google Scholar 

  • Moskowitz, B.M., Methods for estimating Curie temperatures of titanomaghemites from experimental Js–T data, Earth Planet. Sci. Lett., 1981, vol. 53, pp. 84–88.

    Article  Google Scholar 

  • Moskowitz, B.M. and Banerjee, S.K., A comparison of the magnetic properties of synthetic titanomaghemites and some oceanic basalts, J. Geophys. Res., 1981, vol. 86, no. 1312, pp. 11869–11882.

    Article  Google Scholar 

  • Nishitani, T. and Kono, M., Effect of low-temperature oxidation on the remanence properties of titanomagnetites, J. Geomagn. Geoelectr., 1989, vol. 41, no. 1, pp. 19–38.

    Article  Google Scholar 

  • Pearce, C.I., Henderson, C.M.B., Pattrick, R.A.D., van der Laan, G., and Vaughan, D.J., Direct determination of cation site occupancies in natural ferrite spinels by L2,3 X-ray absorption spectroscopy and X-ray magnetic circular dichroism, Am. Mineral., 2006, vol. 91, nos. 5–6, pp. 880–893.

    Article  Google Scholar 

  • Pearce, C.I. et al., Synthesis and properties of titanomagnetite (Fe3–x TixO4) nanoparticles: a tunable solid-state Fe(II–III) redox system, J. Colloid Interface Sci., 2012, vol. 387, pp. 24–38.

    Article  Google Scholar 

  • Pecherskii, D.M., Tikhonov, L.V., and Zolotarev, B.P., Magnetism of basalts in the Gulf of California (Cruise 65 of Glomar Challenger), Izv. Akad. Nauk SSSR, Fiz. Zemli, 1981, no. 9, pp. 51–64.

    Google Scholar 

  • Prevot, M., Lecaille, A., and Mankinen, F., Magnetic effect of maghemitization of oceanic crust, J. Geophys. Res., 1981, vol. 86, no. 135, pp. 4009–4020.

    Article  Google Scholar 

  • Readman, P.W. and O’Reilly, W., The synthesis and inversion of nonstoichiometric titanomagnetites, Phys. Earth Planet. Inter., 1970, vol. 4, no. 2, pp. 121–128.

    Article  Google Scholar 

  • Readman, P.W. and O’Reilly, W., Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe, Ti)3O4, J. Geomagn. Geoelectr., 1972, vol. 24, pp. 69–90.

    Article  Google Scholar 

  • Shcherbakov, V.P., The role of kinetics in the oxidation of titanomagnetite grains, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1982, no. 5, pp. 43–49.

    Google Scholar 

  • Shcherbakov, V.P. and Gribov, S.K., The theory of titanomagnetite grain oxidation with the coefficient of diffusion strongly dependent on the degree of oxidation, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 4, pp. 105–112.

    Google Scholar 

  • Stacey, F.D. and Banerjee, S.K., The Physical Principles of the Rock Magnetism, Amsterdam: Elsevier, 1974.

    Google Scholar 

  • Syono, Y., Magnetocrystalline anisotropy and magnetostriction of Fe3O4–Fe2TiO4 series with special application to rock magnetism, Jpn. J. Geophys., 1965, vol. 4, no. 1, pp. 71–143.

    Google Scholar 

  • Zhilyaeva, V.A., Kolesnikov, L.V., and Petrova, G.N., On partial self-reversal of thermoremanent magnetization in the FeFe2O4–MgTiO4 natural ferromagnetics, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1970, no. 10, pp. 59–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Afremov.

Additional information

Original Russian Text © L.L. Afremov, I.G. Il’yushin, S.V. Anisimov, 2015, published in Fizika Zemli, 2015, No. 5, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afremov, L.L., Il’yushin, I.G. & Anisimov, S.V. Modeling the implications of chemical transformations for the magnetic properties of a system of titanomagnetite nanoparticles. Izv., Phys. Solid Earth 51, 613–621 (2015). https://doi.org/10.1134/S1069351315050018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351315050018

Keywords

Navigation