Skip to main content

Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

Abstract

For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, logN(M, L) = A + B (5 − M) + C logL, where N(M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth’s meridian, differ by a factor of 30 and more and mainly fall in the interval from −1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of −1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the magnitudes which, according to USLE, corresponded to the probability of exceedance 1% and 10% during 50 years or, if the reliable estimate is absent, the maximal magnitudes reported during the instrumental period. As a result, the seismic hazard maps for the Himalayas and the adjacent regions in terms of standard seismic zoning were constructed. Based on these calculations, in order to exemplify the method, we present a series of seismic risk maps taking into account the population density prone to seismic hazard and the dependence of the risk on the vulnerability as a function of population density.

This is a preview of subscription content, access via your institution.

References

  1. Auden, J.B., Earthquakes in relation to the Damodar Valley Project, Proc. Symp. Earthquake Eng., Roorkee: 1st Univ. Roorkee, 1959.

    Google Scholar 

  2. Bak, P., Christensen, K., Danon, L., and Scanlon, T., Unified scaling law for earthquakes, Phys. Rev. Lett., 2002, vol. 88, pp. 178501–178504.

    Article  Google Scholar 

  3. Bhatia, S.C., Chetty, T.R.K., Filimonov, M., Gorshkov, A., Rantsman, E., and Rao, M.N., Identification of potential areas for the occurrence of strong earthquakes in Himalayan arc region, Proc. Indian Acad. Sci., Earth Planet. Sci., 1992, vol. 101, no. 4, pp. 369–385.

    Google Scholar 

  4. Bhatia, S.C., Kumar, R., and Gupta, H.K., A probabilistic seismic hazard map of India and adjoining regions, Ann. Geofis., 1999, vol. 42, pp. 1153–1164.

    Google Scholar 

  5. Christensen, K., Danon, L., Scanlon, T., and Bak, P., Unified scaling law for earthquakes, Proc. Natl. Acad. Sci., 2002, vol. 99(Suppl. 1), pp. 2509–2513.

    Article  Google Scholar 

  6. Davis, C., Keilis-Borok, V., Kossobokov, V., and Soloviev, A., Advance prediction of the March 11, 2011 Great East Japan earthquake: a missed opportunity for disaster preparedness, Int. J. Disaster Risk Reduct., 2012, no. 1, pp. 17–32. doi: 10.1016/j.ijdrr.2012.03.001

    Google Scholar 

  7. Gaur, V.K. and Chouhan, R.K.S., Quantitative measures of seismicity applied to Indian regions, Bull. Indian Soc. Earthquake Technol., 1968, no. 5, pp. 63–78.

    Google Scholar 

  8. Giardini, D., Grunthal, G., Shedlock, K.M., and Zhang, P., The GSHAP global seismic hazard map, Ann. Geofis., 1999, vol. 42, no. 6, pp. 1225–1230.

    Google Scholar 

  9. Gorshkov, A., Kossobokov, V., and Soloviev, A., Recognition of earthquake-prone areas, in Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Keilis-Borok, V.I. and Soloviev, A.A., Eds., Heidelberg: Springer, 2003, pp. 239–310.

    Chapter  Google Scholar 

  10. Gorshkov, A., Parvez, I.A., and Novikova, O., Recognition of earthquake-prone areas in the Himalaya: validity of the results, Int. J. Geophys., 2012. doi 10.1155/2012/419143

    Google Scholar 

  11. Gridded Population of the Worlds, Version 3 (GPWv3), 2005. Palisades: SEDAC, Columbia Univ. http://sedac.ciesin.columbia.edu/gpw. [2012.05.29].

  12. Kaila, K.L. and Rao, M., Seismic zoning maps of Indian subcontinent, Geophys. Res. Bull., 1979, vol. 17, pp. 293–301.

    Google Scholar 

  13. Keilis-Borok, V.I., Kossobokov, V.G., and Mazhkenov, S.A., On the similarity in spatial distribution of seismicity, in Vychislitel’naya seismologiya, vyp. 22: Teoriya i algoritmy interpretatsii geofizicheskikh dannykh (Computational Seismology, vol. 22: Theory and Algorithms of Interpretation of Geophysical Data), 1989, pp. 28–40.

    Google Scholar 

  14. Keilis-Borok, V.I., The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction, Rev. Geophys., 1990, vol. 28, no. 1, pp. 19–34.

    Article  Google Scholar 

  15. Khattri, K.N., Rogers, A.M., Perkins, D.M., and Algermissen, S.T., A seismic hazard map of India and adjacent areas, Tectonophysics, 1984, vol. 108, pp. 93–134.

    Article  Google Scholar 

  16. Kossobokov, V.G., General features of the strongest (with M ≥ 8.2) earthquake-prone areas in the non-Alpine zone of the Transasian seismic belt, Comput. Seismol., 1984, vol. 17: Logical and Computational Methods in Seismology, Keilis-Borok, V.I. and Levshin, A.L., Eds., Moscow: Nauka, pp. 69–72.

    Google Scholar 

  17. Kossobokov, V.G. and Mazhkenov, S.A., Spatial characteristics of similarity for earthquake sequences: fractality of seismicity, in Lecture Notes of the Workshop on Global Geophysical Informatics with Applications to Research in Earthquake Prediction and Reduction of Seismic Risk, Trieste: ICTP, 1988.

    Google Scholar 

  18. Kossobokov, V.G. and Mazhkenov, S.A., On similarity in the spatial distribution of seismicity, Comput. Seismol. Geodyn., 1994, no. 1, pp. 6–15.

    Google Scholar 

  19. Kossobokov, V.G. and Nekrasova, A.K., Generalized Gutenberg-Richter law, Geophys. Res. Abstr., 2003, EAE03–A-06597.

    Google Scholar 

  20. Kossobokov, V.G. and Nekrasova, A.K., General similarity law for earthquakes: global map of the parameters, in Vychislitel’naya seismologiya, vyp. 35: Analiz geodinamicheskikh i seismicheskikh protsessov (Computational Seismology, col. 35: Analysis of Geodynamical and Seismic Processes), Moscow: GEOS, 2004, pp. 160–175.

    Google Scholar 

  21. Kossobokov, V.G., Earthquake prediction: 20 years of global experiment Nat. Hazards, 2012. doi 10.1007/s11069-012-0198-1

    Google Scholar 

  22. Kossobokov, V.G. and Nekrasova, A.K., Global Seismic Hazard Assessment Program maps are erroneous, Seism. Instrum., 2012, vol. 48, no. 2, pp. 162–170. doi: 10.3103/S0747923912020065

    Article  Google Scholar 

  23. Lyubushin, A. and Parvez, I.A., Map of seismic hazard of India using Bayesian approach, Nat. Hazards, 2010, vol. 55, pp. 543–556.

    Article  Google Scholar 

  24. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1982.

    Google Scholar 

  25. Molchan, G., Kronrod, T., Panza, G.F., Multi-scale seismicity model for seismic risk, Bull. Sesimol. Soc. Am., 1997, vol. 87, pp. 1220–1229.

    Google Scholar 

  26. Nekrasova, A. and Kossobokov, V., Generalizing the Gutenberg-Richter scaling law, Trans., Am. Geophys. Union, 2002, vol. 83(47), NG62B–0958.

    Google Scholar 

  27. Nekrasova, A.K. and Kossobokov, V.G., Temporal variations in the parameters of the unified scaling law for earthquakes in the eastern part of Honshu Island (Japan), Dokl. Earth Sci., 2005, vol. 405, no. 9, pp. 1352–1355.

    Google Scholar 

  28. Nekrasova, A.K. and Kossobokov, V.G., General law of similarity for earthquakes: evidence from the Baikal Region, Dokl. Earth Sci., 2006, vol. 407A, no. 3, pp. 484–485.

    Article  Google Scholar 

  29. Nekrasova, A.K., General similarity law for earthquakes: an application to seismoactive regions of the world, Cand. (Phys.-Math.) Sci. Dissertation, Moscow: Inst. Earthquake Prediction Theory and Math. Geophys., Russian Academy of Sciences, 2008.

    Google Scholar 

  30. Nekrasova, A., Kossobokov, V., Peresan, A., Aoudia, A., and Panza, G.F., A multiscale application of the unified scaling law for earthquakes in the Central Mediterranean Area and Alpine Region, Pure Appl. Geophys., 2011, vol. 168, pp. 297–327.

    Article  Google Scholar 

  31. Okubo, P.G. and Aki, K., Fractal geometry in the San Andreas Fault system, J. Geophys. Res., 1987, vol. 92(B1), pp. 345–356.

    Article  Google Scholar 

  32. Panza, G., Irikura, K., Kouteva-Guentcheva, M., Peresan, A., Wang, Z., and Saragoni, R., Eds., Advanced Seismic Hazard Assessment, Pure Appl. Geophys., 2011, vol. 168, nos. 1–4.

    Google Scholar 

  33. Parvez, I.A. and Ram, A., Probabilistic assessment of earthquake hazards in the north-east Indian peninsula and Hindukush region, Pure Appl. Geophys., 1997, vol. 149, pp. 731–746.

    Article  Google Scholar 

  34. Parvez, I.A. and Ram, A., Probabilistic assessment of earthquake hazards in the Indian subcontinent, Pure Appl. Geophys., 1999, vol. 154, pp. 23–40.

    Article  Google Scholar 

  35. Parvez, I.A., Gusev, A.A., Panza, G.F., and Petukhin, A.G., Preliminary determination of the interdependence among strong motion amplitude, earthquake magnitude and hypocentral distance for the Himalayan region, Geophys. J. Int., 2001, vol. 144, pp. 577–596.

    Article  Google Scholar 

  36. Parvez, I.A., Vaccari, F., and Panza, G.F., A deterministic seismic hazard map of India and adjacent areas, Geophys. J. Int., 2003, vol. 155, pp. 489–508.

    Article  Google Scholar 

  37. Parvez, I.A., On the Bayesian analysis of the earthquake hazard in the North-East Indian peninsula, Nat. Hazards, 2007, vol. 40, pp. 397–412.

    Article  Google Scholar 

  38. Sadovskii, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F., On the discreteness property of rocks, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1982, no. 12, pp. 3–18.

    Google Scholar 

  39. Sadovskii, M.A., Golubeva, T.V., Pisarenko, V.F., and Shnirman, M.G., Characteristic sizes of a rock and hierarchic properties of seismicity, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1984, no. 20, pp. 87–96.

    Google Scholar 

  40. Turcotte, D.L., Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge: Cambridge Univ. Press, 1997.

    Book  Google Scholar 

  41. Turcotte, D.L., Seismicity and self-organized criticality, Phys. Earth Planet. Inter., 1999, vol. 111, pp. 275–294.

    Article  Google Scholar 

  42. Wyss, M., Nekrasova, A., and Kossobokov, V., Errors in expected human losses due to incorrect seismic hazard estimates, Nat. Hazards, 2012, vol. 62, no. 3, pp. 927–935.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Nekrasova.

Additional information

Original Russian Text © A.K. Nekrasova, V.G. Kossobokov, I.A. Parvez, 2015, published in Fizika Zemli, 2015, No. 2, pp. 116–125.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nekrasova, A.K., Kossobokov, V.G. & Parvez, I.A. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions. Izv., Phys. Solid Earth 51, 268–277 (2015). https://doi.org/10.1134/S1069351315010103

Download citation

Keywords

  • Seismic Hazard
  • Seismic Event
  • Peak Ground Acceleration
  • Solid Earth
  • Seismic Risk