Skip to main content
Log in

Some questions of geomechanics of the faults in the continental crust

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

We present the results of laboratory experiments on studying the formation of different slip modes on the interfaces in a rock massif such as aseismic creep, stick-slip, and periodic slow-slip events. It is shown that the way of releasing the accumulated elastic energy is determined by the mesoscale structure of the gouge rather than by its macroscopic strength characteristics. The evolution of the stress chains which are formed and broken during the displacement on the fracture, as well as the length and number of these chains, completely determines the regularities of the deformation. The role of these load-bearing elements in nature can be played, e.g., by the “contact spots,” which determine the regularities of stress concentration near the interblock boundary. We consider the effects of low-amplitude vibrations on stressed fractures. It is shown that, depending on the mode of deformation, the vibration impact can either reduce or boost the amplitude of separate events and the fraction of energy that is released dynamically. In the conclusion of the paper, we discuss the possibility of using the shear strength of the fault zone as a geomechanical parameter controlling the mode of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adushkin, V.V., Kocharyan, G.G., Pavlov, D.V., Vinogradov, E.A., Goncharov, A.I., Kulikov, V.I., and Kulyukin, A.A., Influence of seismic vibrations on the development of tectonic deformations, Dokl. Earth Sci., 2009, vol. 426, no. 4, pp. 588–590.

    Google Scholar 

  • Goldin, S.V., Dilatancy, repacking, and earthquakes, Izv., Phys. Solid Earth, 2004, vol. 40, no. 10, pp. 817–832.

    Google Scholar 

  • Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Deformation Dynamics of the Block Massifs of Rocks), Moscow: Akademkniga, 2003.

    Google Scholar 

  • Kocharyan, G.G., Physical meaning of deviation of some parameters from the similarity law in a seismic process, Dokl. Earth Sci., 2009, vol. 429, no. 9, pp. 1602–1604.

    Article  Google Scholar 

  • Kocharyan, G.G., Kishkina, S.B., and Ostapchuk, A.A., Seismic picture of a fault zone. What can be gained from the analysis of fine patterns of spatial distribution of weak earthquake centers?, Geodynam. Tectonophys., 2010, vol. 1, no. 4, pp. 419–440.

    Article  Google Scholar 

  • Kocharyan, G.G. and Ostapchuk, A.A., Variations in rupture zone stiffness during a seismic cycle, Dokl. Earth Sci., 2011, vol. 441, no. 1, pp. 1591–1594.

    Article  Google Scholar 

  • Kocharyan, G.G., Fault zone stiffness as a geomechanical factor controlling the radiation efficiency of earthquakes in the continental crust, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 922–925.

    Article  Google Scholar 

  • Kuznetsov, V.M., Matematicheskie modeli vzryvnogo dela (Mathematical Models for Rock Blasting), Novosibirsk: Nauka, 1977.

    Google Scholar 

  • Mirzoev, K.M., Nikolaev, A.V., Lukk, A.A., and Yunga, S.L., Induced seismicity and the possibilities of controlled relaxation of tectonic stresses in the Earth’s crust, Izv., Phys. Solid Earth, 2009, vol. 45, no. 10, pp. 885–904.

    Article  Google Scholar 

  • Nikolaev, A.V., Earthquakes induced by underground nuclear explosions, Vestn. Ross. Akad. Nauk, 1993, vol. 36, no. 2, pp. 113–116.

    Google Scholar 

  • Nikolaevskii, V.N., The Earth’s crust, dilatancy, and earthquakes: A review, in The Mechanics of Earthquake Rupture, Rice, J., Moscow: Mir, 1982, pp. 133–215.

    Google Scholar 

  • Psakhie, S.G., Ruzhich, V.V., Shilko, E.V., Popov, V.L., Dimaki, A.V., Astafurov, S.V., and Lopatin, V.V., Influence of the state of interfaces on the character of local displacements in fault-block and interfacial media, Tech. Phys. Lett., 2005, vol. 31, no. 87, pp. 712–715.

    Article  Google Scholar 

  • Rebetsky, Yu.L., Tektonicheskie napryazheniya i prochnost” prirodnykh massivov (Tectonic Stresses and the Strength of Natural Rock Massifs), Moscow: Akademkniga, 2007.

    Google Scholar 

  • Ruzhich, V.V., Medvedev, V.Ya., and Ivanova, L.A., Seismogenic fault healing and the recurrence of the earthquakes, in Seismichnost’ Baikal’skogo rifta. Prognosticheskie aspekty. Sb. nauchnykh trudov (Seismicity of Baikal Rift: Prognostic Issues. Collection of Scientific Papers), Novosibirsk: Nauka, 1990, pp. 44–50.

    Google Scholar 

  • Sadovskii, M.A., Mirzoev, K.M., Negmatullaev, S.Kh., and Salomov, N.G., The influence of mechanical micro-vibrations on the character of plastic deformations in the materials, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1981, no. 6, pp. 32–42.

    Google Scholar 

  • Seminskii, K.Zh., Vnutrennyaya struktura kontinental’nykh razlomnykh zon. Tektonofizicheskii aspekt (Internal Structure of the Continental Fault Zones: Tectonophysical Aspect), Novosibirsk: SO RAN, Geo, 2003.

    Google Scholar 

  • Sobolev, G.A., Kontseptsiya predskazuemosti zemletryasenii na osnove dinamiki seismichnosti pri triggernom vozdeistvii (The Concept of Earthquake Predictability Based on the Dynamics of Triggered Seismicity), Moscow: IFZ RAN, 2011.

    Google Scholar 

  • Spivak, A.A. and Tsvetkov, V.M., A new model of the zonal structure of fractures, Dokl. Earth Sci., 2009, vol. 424, no. 1, pp. 151–154.

    Article  Google Scholar 

  • Spivak, A.A., Rigidity of the fault zones in the Earth’s crust estimated from seismic data, Izv., Phys. Solid Earth, 2011, vol. 47, no. 7, pp. 600–609.

    Article  Google Scholar 

  • Filippov, A.E., Popov, V.L., Psakhie, S.G., Ruzhich, V.V., and Shilko, E.V., Converting displacement dynamics into creep in block media, Tech. Phys. Lett., 2006, vol. 32, no. 6, pp. 545–549.

    Article  Google Scholar 

  • Biegel, R. and Sammis, C., The frictional properties of a simulated gouge having a fractal particle distribution, J. Struct. Geol., 1989, vol. 11, no. 7, pp. 827–846.

    Article  Google Scholar 

  • Brace, W.F. and Byerlee, J.D., Stick-slip as a mechanism for earthquakes, Science, 1966, vol. 153, pp. 990–992.

    Article  Google Scholar 

  • Brodsky, E., Ma, K.F., Mori, J., et al., Rapid response fault drilling: past, present, and future, Sci. Drill., 2009, no. 8, pp. 66–74.

    Google Scholar 

  • Chester, F.M., Evans, J.P., and Biegel, R.L., Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res., 1993, vol. 98, pp. 771–786.

    Article  Google Scholar 

  • Chester, F.M. and Chester, J.S., Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 1998, vol. 295, pp. 199–221.

    Article  Google Scholar 

  • Evans, J.P. and Chester, F.M., Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures, J. Geophys. Res., 1995, vol. 100, no. 13, pp. 7–20.

    Google Scholar 

  • Fossen, H., Schultz, R.A., Shipton, Z.K., and Mair, K., Deformation bands in sandstone: A review, J. Geol. Soc., 2007, vol. 164, pp. 755–769.

    Article  Google Scholar 

  • Gao, H., Schmidt, D.A., and Weldon, R.J., Scaling relationships of source parameters for slow slip events, Bull. Seismol. Soc. Am., 2012, vol. 102, no. 1, pp. 352–360. doi: 10.178510120110096

    Article  Google Scholar 

  • Hill, D.P. and Prejean, S.G., Dynamic triggering, Treatise Geophys., 2006, vol. 4: Earthquake Seismology, pp. 1–52.

    Google Scholar 

  • Ito, Y., Asano, Y., and Obara, K., Very low-frequency earthquakes indicate a transpressional stress regime in the Nankai accretionary prism, Geophys. Rev. Lett., 2009, vol. 36, L20309. doi: 10.1029/2009GL039332

    Article  Google Scholar 

  • Jeppson, T.N., Bradbury, K.K., and Evans, J.P., Geophysical properties within the San Andreas fault zone at the San Andreas fault observatory at depth and their relationships to rock properties and fault zone structure, J. Geophys. Res., 2010, vol. 115, B12423. doi: 10.1029/2010JB007563

    Article  Google Scholar 

  • Kanamori, H. and Hauksson, E., A slow earthquake in the Santa Maria Basin, California, Bull. Seismol. Soc. Am., 1992, vol. 82, no. 5, pp. 2087–2096.

    Google Scholar 

  • Kanamori, H. and Brodsky, E.E., The physics of earthquakes, Rep. Prog. Phys., 2004, vol. 67, pp. 1429–1496.

    Article  Google Scholar 

  • Kaneko, Y., Ampuero, J.-P., and Lapusta, N., Spectral-element simulations of long-term fault slip: Effect of low-rigidity layers on earthquake-cycle dynamics, J. Geophys. Res., 2011, vol. 116, B10313. doi: 10.1029/2011JB008395

    Article  Google Scholar 

  • Keilis-Borok, V.I., On estimation of the displacement in an earthquake source and of source dimensions, Ann. Geophys., 1959, vol. 12, pp. 205–214.

    Google Scholar 

  • Lay, T., Aster, R.C., Forsyth, D.W., Romanowicz, B., Allen, R.M., Cormier, V.F., Gomberg, J., Hole, J.A., Masters, G., Schutt, D., Sheehan, A., Tromp, J., and Wysession, M.E., Seismological Grand Challenges in Understanding Earth’s Dynamic Systems, Denver: Incorporated Research Institutions for Seismology, 2009.

    Google Scholar 

  • Linde, A.T., Gladwin, M.T., Johnston, M.J.S., Gwyther, R.L., and Bilham, R.G., A slow earthquake sequence on the San Andreas fault, Nature, 1996, vol. 383, pp. 65–68.

    Article  Google Scholar 

  • Mair, K., Frye, K.M., and Marone, C., Influence of grain characteristics on the friction of granular shear zones, J. Geophys. Res., 2002, vol. 107, no. B10, pp. ECV4-1–ECV4-9. doi: 10.1029/2001JB000516

    Google Scholar 

  • Noda, H. and Lapusta, N., Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: Effect of heterogeneous hydraulic diffusivity, J. Geophys. Res., 2010, vol. 115, B12314. doi: 10.1029/2010JB007780

  • Peng, Z. and Gomberg, J., An integrated perspective of the continuum between earthquakes and slow-slip phenomena, Nat. Geosci., 2010, vol. 3, pp. 599–607.

    Article  Google Scholar 

  • Rockwell, T.K. and Ben-Zion, Y., High localization of primary slip zones in large earthquakes from paleoseismic trenches: Observations and implications for earthquake physics, J. Geophys. Res., 2007, vol. 112, B10304.

    Article  Google Scholar 

  • Sagy, A. and Brodsky, E.E., Geometric and rheological asperities in an exposed fault zone, J. Geophys. Res., 2009, vol. 114, B02301. doi: 10.1029/2008JB005701

    Google Scholar 

  • Sammis, C., King, G., and Biegel, R., The kinematics of gouge deformation, Pure Appl. Geophys., 1987, vol. 125, no. 5, pp. 777–812.

    Article  Google Scholar 

  • Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  • Schulz, S.E. and Evans, J.P., Mesoscopic structure of the Punchbowl fault, Southern California and the geologic and geophysical structure of active strike-slip faults, J. Struct. Geol., 2000, vol. 22, pp. 913–930.

    Article  Google Scholar 

  • Shipton, Z.K., Evans, J.P., Abercrombie, R.E., and Brodsky, E.E., The missing sinks: Slip localization in faults, damage zones, and the seismic energy budget, in Earthquakes: Radiated Energy and the Physics of Faulting. Geophys. Monograph Ser., Abercrombie, R.E., et al., Ed., 2006, vol. 170, pp. 217–222. doi: 10.1029/170GM22

    Google Scholar 

  • Sibson, R.S., Thickness of the seismic slip zone, Bull. Seism. Soc. Am., 2003, vol. 93, no. 3, pp. 1169–1178.

    Article  Google Scholar 

  • Wallace, L.M., Silver, E.A., Nathan, B., Bell, R., Mountjoy, J., Henrys, S., and Pecher, I., IODP workshop on using ocean drilling to unlock the secrets of slow slip events, Sci. Drill., 2012, no. 14, pp. 64–67. doi: 10.2204/iodp.sd.14.10.2012

    Google Scholar 

  • Wibberley, C. and Shimamoto, T., Internal structure and permeability of major strike-slip fault: The median tectonic line in Mie prefecture, southwest Japan, J. Struct. Geol., 2003, vol. 25, pp. 59–78.

    Article  Google Scholar 

  • Zoback, M., Hickman, S., and Ellsworth, W., Scientific drilling into the San Andreas fault zone, Eos. Trans. Am. Geophys. Union, 2010, vol. 91, no. 22, pp. 197–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Kocharyan.

Additional information

Original Russian Text © G.G. Kocharyan, A.A. Ostapchuk, V.K. Markov, D.V. Pavlov, 2014, published in Fizika Zemli, 2014, No. 3, pp. 51–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharyan, G.G., Ostapchuk, A.A., Markov, V.K. et al. Some questions of geomechanics of the faults in the continental crust. Izv., Phys. Solid Earth 50, 355–366 (2014). https://doi.org/10.1134/S1069351314030021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351314030021

Keywords

Navigation