Skip to main content
Log in

Effects of high pressure and temperature on the properties of nanocrystals in rocks: Evidences from Raman spectroscopy

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A search is conducted to detect nanocrystals in a sample of apogranitic pseudotachylite, which is a product of extremely strong crushing of granite in a seismogenic fault. Raman spectroscopy revealed nanocrystals of quartz measuring approximately 17 to 25 nm and low-temperature albite ranging from 8 to 30 nm. The crystallographic cell in the nanocrystals is deformed. The internal stresses which might have been responsible for these deformations vary from approximately −300 (compression) to +480 (tension) MPa. It is found that after having been exposed to high pressure (1 GPa) and temperature (470–500°C for 10 minutes and 550–600°C for 16 minutes), the nanocrystals of quartz reduced in size to ≈10 nm, and the nanocrystals of albite, to 13 nm. At the same time, the level of tension in the lattice spacing of quartz increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J.L., A Multi-Kilometer Pseudotachylyte System As An Exhumed Record of Earthquake Rupture Geometry at Hypocentral Depths (Colorado, USA), Tectonophysics, 2005, vol. 402, pp.37–54.

    Article  Google Scholar 

  • Bogachkin, B.M., Korzhenkov, A.M., Mamyrov, E., et al., The Structure of the 1992 Susamyr Earthquake Source Based on Its Geological and Seismological Manifestations, Fiz. Zemli, 1997, no. 11, pp. 3–18 [Izv. Phys. Earth (Engl. Transl.), 1997, vol. 33, no. 11, pp. 867–882].

  • Bogatikov, O.A., Inorganic Nanoparticles in Nature, Vestn. Ross. Akad. Nauk, 2003, vol.73, no.5, pp.426–428.

    Google Scholar 

  • Bullen, M.E., Burbank, D.W., Garver, J.I., and Abdrakhmatov, K.Ye., Late Cenozoic Tectonic Evolution of the Northwestern Tien Shan: New Age Estimates for the Initiation of Mountain Building, Geol. Soc. Am., 2001, vol. 113, no. 12, pp. 1544–1559.

    Article  Google Scholar 

  • Chanturiya, V.A., Trubetskoi, K.N., Viktorov, S.D., and Bunin, I.Zh., Nanochastitsy v protsesse vskrytiya i razrusheniya materialov (Nanoparticles in the Processes of Rupture and Failure of Material), Moscow: IPKON, 2006.

    Google Scholar 

  • Chedia, O.K., Morfostruktury i noveishii tektogenez Tyan’-Shanya (Morphostructures and Neotectogenesis of the Tien Shan), Frunze: Ilim, 1986.

    Google Scholar 

  • Daniel, I., Gilett, P., McMillan, P.F., and Richet, P., An In-Situ High Temperature of Stable and Metastable Polymorhs Structural Study CaAl2Si2O8, Mineralogical Magazine, 1995, vol. 59, pp. 25–33.

    Article  Google Scholar 

  • De Boer, K., Jansen, A.P.J., van Santen, R.A., et al., Free Energy Calculations of Thermodynamic, Elastic and Structural Properties of [alpha]-Quartz at Variable Pressures and Temperatures, Physical Review, 1996, vol. 54, no. 2, pp. 826–835.

    Article  Google Scholar 

  • Freeman, J., Wang, A., Kuebler, K.E., and Haskin, L.A., Raman Spectroscopic Characterization of the Feldspars — Implications for In Situ Surface Mineral Characterization in Planetary Exploration, Lunar Planet. Sci., 2003, vol. XXXIV, Abstract 1676.

  • Genshaft, Yu. S., Eksperimental’nye issledovaniya v oblasti glubinnoi mineralogii i petrologii (Experimental Studies in Deep Mineralogy and Petrology), Moscow: Nauka, 1977.

    Google Scholar 

  • Gusev, A. I. and Rempel, A.A., Nanocristallicheskie materialy (Nanocrystal Materials), Moscow: Fizmatgiz, 2000.

    Google Scholar 

  • Hofmeister, A.M. and Chopelas, A., Vibrational Spectroscopy of End-Member Silicate Garnets, Phys. Chem. Minerals, 1991, vol. 18, pp. 503–526.

    Google Scholar 

  • Khisina, N.R. and Urusov, V.S., Formation of Heterogeneous Nanosystems in the Processes of Solid-Phase Transformations and Reactions at Changing P, T, P(O2), and P(H2O), Vestn. Otdeleniya Nauk o Zemle, 2003, vol. 73, no. 5, pp. 422–425.

    Google Scholar 

  • Kireenkova, S.M. and Sobolev, G.A., On the Possibility of Studying Natural Processes on a Nanoscale in the Physics of the Earth, Geofizicheskie issledovaniya, 2005, no.1, pp. 108–115.

  • Levien, L., Prewitt, C.T., and Weidner, D., Structure and Elastic Properties of Quartz at Pressure P = 1 atm, J. Am. Mineral., 1980, vol. 65, pp. 920–930.

    Google Scholar 

  • Lyakishev, N.P., Nanocrystal Structures: A New Development Trend in Constructional Materials, Vestn. Ross. Akad. Nauk, 2003, vol.73, no.5, pp.422–425.

    Google Scholar 

  • Madelung, Otfried., Festkorpertheorie, Berlin: Springer, 1972.

    Google Scholar 

  • McKeown, D.A., Raman Spectroscopy and Vibrational Analyses of Albite: from 25oC Through the Melting Temperature, Am. Mineral., 2005, vol. 90, pp. 1506–1517.

    Article  Google Scholar 

  • McMillan, P., Akaogi, M., Ohtani, E., et al., Cation Disorder in Garnets Along the Mg3Al2Si3O12-Mg4Si4O12 Join: An Infrared, Raman and NMR Study, Phys. Chem. Minerals, 1989, vol. 16, pp. 428–435.

    Article  Google Scholar 

  • Mir mineralov, kristallov i nanostruktur (The World of Minerals, Crystals, and Nanostructures), Yushkin N.P. and Rakin, V.I., Eds., Syktyvkar: IG, Geoprint, 2008, 2008.

    Google Scholar 

  • Morozov, Yu.A., Compression-Decompression Model of the Strain-Material Transformations in the Earth’s Crust, in Mekhanizmy strukturoobrazovaniya v litosfere i seismichnost’ (Mechanisms of Structural Formation in the Lithosphere and Seismicity), Moscow: IFZ, 1991, pp. 179–181.

    Google Scholar 

  • Morozov, Yu.A., Kireenkova, S.M., Sobolev, G.A., et al., Experimental Study of Nanostructures of Rocks Exposed to Quasi-Hydrostatic Pressure, in Tezisy dokladov Vserossiiskoi konferentsii 13–17 oktyabrya 2008 g. (Abstr. All-Rus. Conf. 13–17 October, 2008), Moscow: IFZ RAN, vol. 2, pp. 157–158.

  • Morozov, Yu.A., Structure-Formation Function of Transpression and Transtension, Geotektonika, 2002, no.6, pp.3–24 [Geotectonics (Engl. Transl.), 2002, vol. 36, no. 6, pp. 431–450].

  • Novye materialy (New Materials), Moscow: MISIS, 2002.

  • Prewitt, C.T., Sueno, S., and Papike, J., The Crystal Structures of High Albite and Monalbite at High Temperatures, Am. Mineral., 1976, vol. 61, pp. 1213–1225.

    Google Scholar 

  • Richter, H., Wang, Z.P., and Ley, L., The One Phonon Raman Spectrum in Microcrystalline Silicon, Solid State Commun., 1981, vol. 39, pp. 625–629.

    Article  Google Scholar 

  • Shand, S.J., The Pseudotachylyte of Parijs (Orange Free State) and Its Relation to “Trap-Shotten Gneiss” and “Flinty Crush Rock,” Quart. J. Soc. London, 1916, vol. 72, pp.198–221.

    Article  Google Scholar 

  • Sharkov E.V., Trubkin N.V., Krasivskaya I.S., et al., The Oldest Volcanic Glass in the Early Paleoproterozoic Boninite-type Lavas, Karelian Craton: Results of Instrumental Investigations, Dokl. Akad. Nauk, 2003, vol. 390, no. 3, pp. 389–393 [Dokl. Earth Sci. (Engl. Transl.), 2003, vol. 390, no. 4, pp. 580–585].

    Google Scholar 

  • Sharma, S.K., Simons, B., and Yoder, H.S., Raman Study of Anorthite, Calcium Tschertmak’s Pyroxene and Gehlenite in Crystalline and Glassy State, Am. Mineral., 1983, vol. 68, pp. 1113–1125.

    Google Scholar 

  • Shen, H. and Pollak, F.H., Raman Study of Polish-Induced Surface Strain in 〈100〉 GaAs and InP, Appl. Phys. Lett., 1984, vol. 45, pp. 692–694.

    Article  Google Scholar 

  • Sobolev, G.A., Ponomarev, A.V., Nikitin, A.N., et al., Dynamics of the Polymorphic α-β-Transition in Quartzite from Data of Neutron Diffractometry and Acoustic Emission, Fiz. Zemli, 2004, no. 10, pp. 5–15 [Izv. Phys. Earth (Engl. Transl.), 2004, vol. 40, no. 10, pp. 788–797].

  • Sobolev, G.A., Vettegren, V.I., Kireenkova, S.M., et al., Raman Spectroscopy of Nanocrystals in Rock Fiz. Zemli, 2007, no. 6, pp. 7–14 [Izv. Phys. Earth (Engl. Transl.), 2007, vol. 43, no. 6, pp. 447–454].

  • Sobolev, G.A., Kireenkova, S.M., Morozov, Yu.A., et al., Nanostructures in the Deep Xenolite before and after Straining, Fiz. Zemli, 2009, no. 9, pp. 3–11 [Izv. Phys. Earth (Engl. Transl.), 2009, vol. 45, no. 9, pp. 731–739].

  • Strauch, D. and Dorner, B., Lattice Dynamics of [alpha]-Quartz: I. Experiment, J. Phys.: Condens. Matter., 1993, vol. 5, pp. 6149–6154.

    Article  Google Scholar 

  • Tiong, K.K., Amirtharagj, P.M., Pollak, F.H., and Aspness, D.E., Effects of As+ Ion Implantation of the Raman Spectra of GaAs: “Spatial Correlation” Interpretation, Applied Phys. Lett, 1984, vol. 44, pp. 122–128.

    Article  Google Scholar 

  • Urusov, V.S., Tauson, V.L., and Akimov, V.V., Geokhimiya tverdogo tela (Geochemistry of a Solid), Moscow: GEOS, 1997.

    Google Scholar 

  • Valiev, R.Z. and Aleksandrov, I.V., Nanostrukturnye materialy poluchennye intensivnoi plasticheskoi deformatsiei (Nanostructured Materials Produced by Severe Plastic Deformation), Moscow: Logos, 2000.

    Google Scholar 

  • Velde, B., Syono, Y., Kikuchi, M., and Boyer, H., Raman Microprobe Study of Synthetic Diaplectic Plagioclase Feldspars, Phys. Chem. Minerals, 1989, vol. 16, pp. 436–441.

    Article  Google Scholar 

  • Yapaskurt, V.O., Strukturogenez staticheskogo metamorfizma (Structurogenesis of Static Metamorphism), Moscow: MGU, 2004.

    Google Scholar 

  • Yushkin, N.P., Ultrafine- and Fine-Dispersed State of Mineral Material and the Problems of Nanomineralogy, in Nanomineralogiya. Ul’tradispersnoe sostoyanie mineral’nogo veschestva (Nanomineralogy: Ultrafine Dispersed State of Mineral Material), St. Petersburg: Nauka, 2005.

    Google Scholar 

  • Zbinden, R., Infrared Spectroscopy of High Polymers, New York: Academic Press, 1964.

    Google Scholar 

  • Zhang, W.F., He, Y.L., Zhang, M.S., et al., Raman Scattering Study on Anatase TiO2 Nanocrystals, J. Phys. D. Applied Phys, 2000, vol. 33, pp. 912–916.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Sobolev, Yu. S.Genshaft, S.M. Kireenkova, Yu.A. Morozov, A.I. Smul’skaya, V.I. Vettegren’, V.B. Kulik, 2011, published in Fizika Zemli, 2011, No. 6, pp. 3–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, G.A., Genshaft, Y.S., Kireenkova, S.M. et al. Effects of high pressure and temperature on the properties of nanocrystals in rocks: Evidences from Raman spectroscopy. Izv., Phys. Solid Earth 47, 465–474 (2011). https://doi.org/10.1134/S1069351311050053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351311050053

Keywords

Navigation