Skip to main content
Log in

The role of the gravitational potential of the lithosphere in the formation of a global stress field

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The global stress field appearing in the Earth’s lithosphere under the action of forces caused by the difference of gravitational potential is calculated. An original algorithm is proposed and the operational Earth Stresses program code is developed. The data on the topography, thickness, and density of the Earth’s crust and the upper mantle, as well as the gravitational anomalies and thermal conditions in the lithosphere were taken into account in the calculations. A comparison of the calculation results and the observed data makes it possible to conclude that the action of the forces of the difference of the gravitational potential alone is sufficient to explain the features of the first order of the stress field in the Earth’s lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • National Geophysical Data Center. ETOPO-5 Bathymetry and Topography Data, in Data Announc. 88-MGG-02, NOAA, Boulder, Col., 1988.

    Google Scholar 

  • Artyushkov, E.V., Geodinamika (Geodynamics), Moscow: Nauka, 1979.

    Google Scholar 

  • Artyushkov, E.V., Stresses in the Lithosphere Caused by Crustal Thickness Inhomogeneities, J. Geophys. Res., 1973, vol. 78, pp. 7675–7708.

    Article  Google Scholar 

  • Bassin, C., Laske, G., and Masters, G., The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 2000, vol. 81, p. F897.

    Google Scholar 

  • Bird, P., An Updated Digital Model of Plates Boundaries, Geochem., Geophys., Geosystems. An Electronic Journal of the Earth Sciences, vol. 4, no. 3, p. 14, 2003.

    Google Scholar 

  • Bird, P., Testing Hypotheses on Plate-Driving Mechanisms with Global Lithosphere Models Including Topography, Thermal Structure, and Faults, J. Geophys. Res., 1998, vol. 103, p. 129.

    Google Scholar 

  • Burbidge, D.R., Thin Plate Neotectonic Models of the Australian Plate, J. Geophys. Res., 2004, vol. 109.

  • Coblentz, D. and Sandiford, M., Tectonic Stresses in African Plate: Constraints on the Ambient Lithospheric Stress State, Geology, 1994, vol. 22, pp. 831–834.

    Google Scholar 

  • Coblentz, D.D. and Richardson, R.M., Analysis of the South American Intraplate Stress Field, J. Geophys. Res., 1996, vol. 101, pp. 8643–8657.

    Article  Google Scholar 

  • Coblentz, D.D., Richardson, R.M., and Sandiford, M., On the Gravitational Potential of the Earth’s Lithosphere, Tectonics, 1994, vol. 13, pp. 929–945.

    Google Scholar 

  • Coblentz, D.D., Sandiford, M., Richardson, R.M., Zho, S., and Hillis, R., The Origins of the Intraplate Stress Field in Continental Australia, Earth Planet. Sci. Lett., 1995, vol. 133, pp. 299–309.

    Google Scholar 

  • Coblentz, D.D., Zhou, S., Hillis, R.R., Richardson, R.M., and Sandiford, M., Topography, Boundary Forces, and the Indo-Australian Intraplate Stress Field, J. Geophys. Res., 1998, vol. 103, pp. 919–931.

    Article  Google Scholar 

  • Ershov, A.V., Reologiya litosfery. V: Geoistoricheskii i geodinamicheskii analiz osadochnykh basseinov (Rheology of Lithosphere. In: Geohistorical and Geodynamical Analysis of Sedimentary Basins), Moscow: MPR RF, 1999.

    Google Scholar 

  • Ershov, A.V. and Stephenson, R.A., Implications of a Visco-Elastic Model of the Lithosphere for Calculating Yield Strength Envelopes, J. of Geodynamics, 2006, vol. 42, pp. 12–27.

    Article  Google Scholar 

  • Flesch, L.M., Holt, W.E., Haines, A.J., and Shen-Tu, B., Dynamics of the Pacific-North American Plate Boundary in the Western United States, Science, 2000, vol. 287, pp. 834–836.

    Google Scholar 

  • Forsyth, D. and Uyeda, S., On the Relative Importance of the Driving Forces of Plate Motion, Geophys. J.R. Astron. Soc, 1975, vol. 43, pp. 163–200.

    Google Scholar 

  • Frank, F.C., Plate Tectonics, the Analogy with Glacier Flow, and Isostasy, in Flow and Fracture of Rocks, Geophys. Monogr. Ser, 1972, vol. 16, pp. 285–292.

    Google Scholar 

  • Galybin, A.N. and Mukhamediev, Sh.A., Plane Elastic Boundary Value Problem Posed on Orientation of Principal Stresses, J. Mech. Phys. Solids, 1999, vol. 47, pp. 2381–2409.

    Article  Google Scholar 

  • Harper, J.R., On the Driving Forces of Plate Tectonics, Geophys. J. R. Astron Soc, 1975, vol. 40, pp. 465–474.

    Google Scholar 

  • Heidbach, O., Fuchs, K., Muller, B., Reinecker, J., Sperner, B., Tingay, M., and Wenzel, F., Eds., The World Stress Map—Release 2005 (Commission for the Geological Map of the World), Paris, 2007.

  • Kochin, N.E., Vektornoe ischislenie i nachala tenzornogo ischisleniya (Vector Analysis and Principles of Tensor Calculation), Moscow: Nauka, 1965.

    Google Scholar 

  • Leemans, R. and Cramer, W., The IIASA database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid. Research Report RR-91-18 (Int. Inst. of Appl. Syst. Analysis), Laxenburg, 1991, p. 61.

  • Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., and Olson, T.R., The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Goddard Space Flight Center, Greenbelt, Md., 1998.

    Google Scholar 

  • Lieth, H., Modelling the Primary Productivity of the Earth. Nature and Resources, in UNESCO, VIII,2:5–10, 1972.

    Google Scholar 

  • Lithgow-Bertelloni, C. and Guynn, J., Origin of the Lithospheric Stress Field, J. Geophys. Res., 2004, vol. 109.

  • Liu, Z. and Bird, P., Computer Simulation of Neotectonics in Latitudes 22–70, Western North America (Abstract), Eos Trans. AGU, Fall Meet. Suppl., 1998, vol. 79, p. F566.

    Google Scholar 

  • Liu, Z. and Bird, P., Finite Element Modeling of Neotectonics in New Zealand, J. Geophys. Res., 2002, vol. 2328, no. B12.

  • Meijer, P.T., Govers, R., and Wortel, M.J.R., Forces Controlling the Present-Day State of Stress of the Andes, Earth Planet. Sci. Lett., 1997, vol. 148, pp. 157–170.

    Article  Google Scholar 

  • Mooney, A., Laske, G., and Masters, G., Crust 5.1: a Global Crustal Model at 5 × 5 Degrees, J. Geophys. Res., 1998, vol. 103, pp. 727–747.

    Article  Google Scholar 

  • Mukhamediev, Sh.A., Neklassicheskie kraevye zadachi mekhaniki sploshnoi sredy dlya geodinamiki, Dokl. Akad. Nauk, 2000, vol. 373, no. 2, pp. 242–246 [Dokl. (Nonclassical Boundary Problems of Continuous Medium Mechanics for Geodynamics), vol. 373, no. 2, pp. ].

    Google Scholar 

  • Mukhamediev, Sh.A. and Galybin, A.N., Pryamoi podkhod k opredeleniyu regional’nykh polei napryazhenii (na primere Zapadno-Evropeiskoi, Severo-Amerikanskoi i Avstraliiskoi platform), Fiz. Zemli, 2001, no. 8, pp. 23–41.

  • Mukhamediev, Sh.A., Galybin, A.N., and Brady, B.H.G., Determination of the Stress Fields in the Elastic Lithosphere by Methods Based on the Stress Orientations Int. J. of Rock Mechanics and Mining Sciences, 2006, vol. 43, pp. 66–88.

    Article  Google Scholar 

  • Pacanovsky, K., Davis, D., Richardson, R., and Coblentz, D., Interplate Stresses and Plate-Driving Forces in the Philippine Sea Plate, J. Geophys. Res., vol. 104, no. B1, pp. 1095–1110.

  • Poliakov, A., Cundall, P., Podladchikov, Yu., and Lyakhovsky, V., An Explicit Inertial Method for the Simulation of Viscoelastic Flow: An Evaluation of Elastic Effects on Diapiric Flow in Two and Three Layer Models, Proc. of NATO Advanced Study Institute on Dynamic Modeling and Flow in the Earth and Planets, Stone D.B and Runcorn S.K., Eds. Flow and Creep in the Solar System: Observations, Modeling and Theory, Kluwer, Holland, 1993, pp. 175–195.

    Google Scholar 

  • Ranalli, G., Rheology of the Earth, 2nd ed., Chapman & Hall, 1971, p. 407.

  • Reynolds, S.D., Coblentz, D.D., and Hillis, R.R., Tectonic Forces Controlling the Regional Intraplate Stress Field in Continental Australia: Results from New Finite Element Modeling, J. Geophys. Res., 2002, vol. 107, no. B7.

  • Richardson, R. and Reding, L., North American Plate Dynamics, J. Geophys. Res., 1991, vol. 96, no. B7, pp. 12.201–12.223.

    Article  Google Scholar 

  • Richardson, R.M., Solomon, S.C., and Sleep, N.H., Intraplate Stress as an Indicator of Plate Tectonic Driving Forces, J. Geophys. Res., 1976, vol. 81, pp. 1847–1856.

    Article  Google Scholar 

  • Richardson, R.M., Solomon, S.C., and Sleep, N.H., Tectonic Stress in the Plates, Rev. Geophys., 1979, vol. 17, pp. 981–1019.

    Article  Google Scholar 

  • Sandiford, M., Coblentz, D., and Richardson, R., Ridge Torques and Continental Collision in the Indian-Australian Plate, Geology, 1995, vol. 23, no. 7, pp. 653–656.

    Article  Google Scholar 

  • Solomon, S.C., Sleep, N.H., and Richardson, R.M., On the Forces Driving Plate Tectonics: Inferences from Absolute Plate Velocities and Intraplate Stress, Geophys. J. R. Astr. Soc., 1975, vol. 42, pp. 769–801.

    Google Scholar 

  • Uyeda, S., The New View of the Earth, San Francisco: W.H. Freeman, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Koptev.

Additional information

Original Russian Text © A.I. Koptev, A.V. Ershov, 2010, published in Fizika Zemli, 2010, No. 12, pp. 66–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koptev, A.I., Ershov, A.V. The role of the gravitational potential of the lithosphere in the formation of a global stress field. Izv., Phys. Solid Earth 46, 1080–1094 (2010). https://doi.org/10.1134/S1069351310120050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351310120050

Keywords

Navigation