Skip to main content
Log in

Multiharmonic model of seismic activity in Kamchatka

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Based on the uniform catalogue of earthquakes of the minimum energy class 8.5 for 1962–2008, multiharmonic models of seismic activity in Kamchatka are developed. The main harmonic components with periods from a few days to 12 years are identified. Both the entire catalogue and its modified versions obtained by the elimination of aftershocks and clusters, as well as nonoverlapping time series were used to study the stability of the models. The forward-prediction testing showed that in the models with weekly averaged initial data, periods of increased and reduced seismic activity lasting for several weeks are predicted with high confidence on an interval of up to 1.8% of the education period. This testifies for the presence of deterministic components in the seismic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak, P. and Tang, Ch., Earthquakes as self-organized critical phenomena, J. Geophys. Res., 1989. vol. 94, pp. 15635–15637.

    Article  Google Scholar 

  • Balakrishnan, A.V., Kalman Filtering Theory, New York: Springer-Verlag, 1984.

    Google Scholar 

  • Bollerslev, T., Generalized Autoregressive Conditional Heeroskedasticity, Journal of Econometrics, 1986, vol. 31, pp. 307–327.

    Article  Google Scholar 

  • Bollerslev, T., Engle, R., and Nelson, D., ARCH Models, San Diego: University of California, 1993.

    Google Scholar 

  • Butov, A.A., Some Probabilistic Problems Arising In the Model Construction, Obozrenie Prikladnoi I Prom. Mat., 1997, vol. 4, no. 1, pp. 5–17.

    Google Scholar 

  • Daubechies, I, Ten Lectures on Wavelets, Philadelphia, PA: Soc. for Ind. and Appl. Math., 1992.

    Google Scholar 

  • Fedotov, S.A., Energeticheskaya klassifikatsiya Kurilo-Kamchatskikh zemletryasenii i problema magnitud (The Energy Classification of Kuril-Kamchatka Earthquakes and the Magnitude Problem), Moscow: Nauka, 1972.

    Google Scholar 

  • Guo, J.Y., Greiner-Mai, H., Dierks, O., et al., Application of the Folding-Averaging Algorithm for the Determination of the Periods of the Earth’s Free Oscillation Using Superconducting Gravimeter Data, Bulletin d’Information des Mares Terrestres (BIM), 2005, vol. 139, pp.11025–11036.

    Google Scholar 

  • Hurst, H.E., Long-term Storage Capacity of Reservoirs, Transactions of the American Society of Civil Engineers, 1951, no. 116, pp. 770–799.

  • Kuksenko, V.S., A Model of Transition from Micro to Macro Failure in Solids, Sb. dokl. I Vsesoyuzn. shk.-seminara “Fizikaprochnosti i plastichnosti” (Proc. I All-Russian School Seminar “Physics of Strength and Plasticity”), Leningrad: Nauka, 1986.

    Google Scholar 

  • Lyubushin, A.A., Pisarenko, V.F., Ruzhich, V.V., and Buddo, V.Yu., Identification of Periodicities in Seismic Regime, Vulkanol. Seismol., 1998, no. 1, pp. 62–76.

  • Lyubushin, A.A., Wavelet-Aggregated Signal and Synchronous Peaked Fluctuations in Problems of Geophysical Monitoring and Earthquake Prediction, Fiz. Zemli, 2000, no. 3, pp. 20–30 [Izv. Phys. Earth (Engl. Transl.), 2000, vol. 36, no. 3, pp. 204–213].

  • Lyubushin, A.A., Analiz dannykh sistem geofizicheskogo i ekologicheskogo monitoringa (Analysis of the Data of Geophysical and Ecological Monitoring Systems), Moscow: Nauka, 2007.

    Google Scholar 

  • Molchan, G.M. and Dmitrieva, O.E., Identification of Aftershocks: A Review and New Approaches, Vychislit. Seismologiya, 1991, no. 24, pp. 19–50.

  • Naimark, Yu.I. and P.S. Landa, Stokhasticheskie i khaoticheskie kolebaniya (Stochastic and Chaotic Oscillations), Moscow: Nauka, 2009.

    Google Scholar 

  • Nicolis, G. and Prigogine, I., Self-Organization in Non-Equilibrium Systems, New York: Wiley-Interscience, 1977.

    Google Scholar 

  • Ott, E., Chaos in Dynamic Systems, 2002, Cambridge University Press.

  • Saltykov, V.A., Sinitsyn, V.I., and Chebrov, V.N., High-Frequency Seismic Noise from Monitoring in Kamchatka, Fiz. Zemli, 1997, no. 3, pp. 39–47 [Izv. Phys. Earth (Engl. Transl.), 1997, vol. 33, no. 3, pp. 205–212].

  • Smirnov, V.B., Experience of Estimating the Representativity of the Catalogues of Earthquakes, Vulkanol. Seismol., 1997, no. 4, pp. 93–105.

  • Sobolev, G.A. and Zav’yalov, A.D., On the Concentration Crierion of Seismogenic Ruptures, Dokl. Akad. Nauk SSSR, 1980, vol. 252,no. 1, pp. 69–71.

    Google Scholar 

  • Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Physics of Earthquakes and the Precursors), Moscow: Nauka, 2003.

    Google Scholar 

  • Sobolev, G.A., Evolution of Periodic Variations in the Seismic Intensity before Strong Earthquakes, Fiz. Zemli, 2003, no. 11, pp. 3–15 [Izv. Phys. Earth (Engl. Transl.), 2003, vol. 39, no. 11, pp. 873–884].

  • Sobolev, G.A., Microseismic Variations Prior to a Strong Earthquake, Fiz. Zemli, 2004, no. 6, pp. 3–13 [Izv. Phys. Earth (Engl. Transl.), 2004, vol. 40, no. 6, pp. 455–464].

  • Sobolev, G.A., Lyubushin, A.A., and Zakrzhevskaya, N.A., Synchronization of Microseismic Variations within a Minute Range of Periods, Fiz. Zemli, 2005, no. 8, pp. 3–27 [Izv. Phys. Earth (Engl. Transl.), 2005, vol. 41, no. 8, pp. 599–621].

  • Sornette, D. and Sammis, C.G., Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions, J. Phys. I. France, 1995, vol. 5, pp. 607–619.

    Article  Google Scholar 

  • Tyupkin, Yu.S., Modulation of Weak Sesmicity by Tidal Strains Before Strong Earthquakes, Vulkanol. Seismol., 2002, no. 3, pp. 3–10.

  • Valeev, S.G., Regressionnoe modelirovanie pri obrabotke nablyudenii (Regression Modeling in the Processing of Observations), Moscow: Nauka, 1991.

    Google Scholar 

  • Valeev, S.G. and Kurkina, S.V., Program Implementation of DRM approach for Processing and Analysis of Time Series, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2006, no. 5, pp. 10–21.

  • Valeev, S.G. and Faskhutdinova, V.A., Statistical Models of the Dynamics of Seismic Activity, Sb. dokladov IV mezhdun. konf. Solnechno-zemnye svyazi i predvestniki zemletryaseniiU (Proc. IV Int. Conf. on Solar-Terrestrial Coupling and Precursors of Earthquakes), Petropavlovsk-Kamchatskii: IKIR DVO RAN, 2007.

    Google Scholar 

  • Valeev, S.G. and Faskhutdinova, V.A., Modification of the AS DRM Program Complex As Applied to the Processing of Solar and Geophysical Data, Vopr. Sovremennoi Nauki I Praktiki, 2008, no. 2(12), pp. 64–68.

  • Yarushkina, N.G., Osnovy teorii nechetkikh i gibridnykh sistem (Introduction to the Theory of Fuzzy and Hybrid Systems), Moscow: Finansy i Statistika, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Sobolev, S.G. Valeev, V.A. Faskhutdinova, 2010, published in Fizika Zemli, 2010, No. 12, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, G.A., Valeev, S.G. & Faskhutdinova, V.A. Multiharmonic model of seismic activity in Kamchatka. Izv., Phys. Solid Earth 46, 1019–1034 (2010). https://doi.org/10.1134/S1069351310120013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351310120013

Keywords

Navigation