Skip to main content
Log in

On the nature of cosmic dust in sedimentary rocks

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

In the paper, the chemical composition and origin of cosmic dust, as well as its distribution in the geological past, are discussed. Special attention is given to the problem of the difference in cosmic dust from volcanic dust on the basis of indicators such as cosmogenic helium and iridium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V., Extraterrestrial Causes for the Cretaceous-Tertiary Extinction, Science, 1980, vol. 208, pp. 1095–1108.

    Article  Google Scholar 

  • Alvarez, W., Smit, J., Lowrie, W., and Asaro, A., Proximal Impacts Deposits at the Cretaceous-Tertiary Boundary in the Gulf of Mexico: a Restudy of DSDP Leg 77, Sites 536 and 540, Geology, 1992, vol. 20, p. 697.

    Article  Google Scholar 

  • Anufriev, G.S., The Isotopic Composition of Helium and the Growth Rates of the Pacific Ocean Iron-Manganese Concretions, Litologiya i Poleznye Iskopaemye, 1996, no. 5, pp. 552–560.

  • Anufriev, G.S., The Rate of Growth in the Deep-sea Iron-Manganese Concretions and the Flows of Isotopes on the Oceanic Bottom, Dokl. Akad. Nauk, 1999, vol. 364, pp. 683–686.

    Google Scholar 

  • Bradley, J.P., Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets, Science, 1994, vol. 265, pp. 925–929.

    Article  Google Scholar 

  • Bradley, J.P., Dai, Z.R., Erni, R., et al., An Astronomical 2175 A Feature in Interplanetary Dust Particles, Science, 2005, vol. 307, pp. 244–247.

    Article  Google Scholar 

  • Brownlee, D.E., Bates, B.A., and Wheelock, M.M., Extraterrestrial Platinum Group Nuggets in Deep-Sea Sediments, Nature, 1984, vol. 309, pp. 603–605.

    Article  Google Scholar 

  • Campbell, A.J., Simon, S.B., Humayuni, M., and Grossman. L., Chemical Evolution of Metal in Refractory Inclusions in CV3 Chondrites, Geochim. Cosmochim. Acta., 2003, vol. 67, pp. 3119–3134.

    Article  Google Scholar 

  • Cassidy, W., Cosmic Dust, Science, 1964, vol. 144, pp. 1475–1477.

    Article  Google Scholar 

  • Chapman, M.G. and Lauretta, D., Iron Spherules from the Triassic-Jurassic Boundary Zone of the Lower Moennave, Nevada: a Preliminary Report on Possible Extraterrestrial Dust Deposites, 32nd IGC Florence 2004, Scientific Sessions: Abstracts (Part 2), p. 1141.

  • Dai, Z.R. and Bradley, J.P., Iron-Nickel Sulfides in Anhydrous Interplanetary Dust Particles, Geochimica et Cosmochimica Acta, 2001, vol. 65, pp. 3601–3612.

    Article  Google Scholar 

  • Eugster, O., Geiss, J., and Krahenbuhl, U., Noble Gas Abundances and Noble Metal Concentrations in Sediments from the Cretaceous-Tertiary Boundary, Earth Planet. Sci. Lett., 1985, vol. 74, pp. 27–34.

    Article  Google Scholar 

  • Farley, K.A., Cenozoic Variations in the Flux of Interplanetary Dust Recorded by 3He in a Deep-Sea Sediment, Nature, 1995, vol. 376, pp. 153–156.

    Article  Google Scholar 

  • Farley, K.A., Montanari, A., Shoemaker, E.M., and Shoemaker, C.S., Geochemical Evidence for a Comet Shower in the Late Eocene, Science, 1998, vol. 280, pp. 1250–1253.

    Article  Google Scholar 

  • Finkelman, R.B., Magnetic Particles Extracted from Manganese Nodules: Suggested Origin from Stony and Iron Meteorites, Science, 1970, vol. 167, pp. 982–984.

    Article  Google Scholar 

  • Fuchs, L.H. and Blander, M., Molybdenite in Calcium-Aluminium-Rich Inclusions in the Allende Meteorite, Geochim. Cosmochim. Acta., 1977, vol. 41, pp. 1170–1175.

    Article  Google Scholar 

  • Genge, M.J., Crady, M.M., and Hutchinson, R., The Texture and Compositions of Fine-Grained Antarctic Micrometeorites: Implications for Comparisons with Meteorites, Geochim. Cosmochim. Acta., 1997, vol. 61, pp. 5149–5162.

    Article  Google Scholar 

  • Grachev, A.F., Kamienskii, I.L., Korchagin, O.A., and Kollmann, H.A., The First Data on the Helium Isotopy in the Transition Layer of the Clays at the Cretaceous-Paleogene Boundary (Gams, the Eastern Alps), Fiz. Zemli, 2007, no. 9.

  • Grachev, A.F., Korchagin, O.A., Kollmann, H.A., et al., A New Look at the Nature of the Transitional Layer at the K/T Boundary near Gams, Eastern Alps, Austria, and the Problem of the Mass Extinction of the Biota, Russ. J. Earth Sci., 2005, vol. 7, pp. 1–45.

    Article  Google Scholar 

  • Grachev, A.F., Korchagin, O.A., Tselmovich, V.A., and Kollmann, H.A., Cosmic Dust and Micrometeorites in the Transition Layer of Clays at the Cretaceous-Paleogene Boundary in the Gams Section (the Eastern Alps): Morphology and Composition, Fiz. Zemli, 2008, no. 7, pp. 42–57.

  • Jedwab, J., Cosmic Dust in Manganese Nodules. Pictures from the Report on “Deep-Sea Deposits” of the H.M.S. Challenger’s Expedition, http://www.ub.ac.be/sciences/cosmic-dust.pdf.

  • Jessberger, E.K., Bohsung, J., Chakaveh, S., and Traxel, K., The Volatile Element Enrichment of Chondritic Interplanetary Dust Particles, Earth Planet. Sci. Lett., 1992, vol. 112, pp. 91–99.

    Article  Google Scholar 

  • Karner, D.B., Levine, J., Muller, R.A., et al., Extraterrestrial Accretion from the GISP2 Ice Core, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 751–763.

    Article  Google Scholar 

  • Klock, W., Thomas, K.L., McKay, D.S., and Palme, H., Unusual Olivine and Pyroxene Composition in Interplanetary Dust and Unequilibrated Ordinary Chondrites, Nature, 1989, vol. 339, pp. 126–129.

    Article  Google Scholar 

  • Korchagin, O.A., Dubinina, S.V., Tsel’movich, V.A., and Pospelov, I.I., Possible Impact Event in the Late Cambrian, Global Geology, vol. 10, no. 1, pp. 78–82

  • Kosakevitch, A. and Disnar, J.R., Nature and Origin of Chemical Zoning in the Metal Nucleus and Oxide Cortex of Cosmic Spherules from the Tuamotu Archipelago, French Polynesia, Geochim. Cosmochim. Acta., 1997, vol. 61, pp. 1073–1082.

    Article  Google Scholar 

  • Krinov, E.L., New Studies of Impact and the Collection of the Parts of the Sikhote Alin Meteor Shower, in Problems of Cosmochemistry and Meteoritics, Kiev: Publishing House Naukova Dumka, 1971, pp. 117–128.

    Google Scholar 

  • Krylov, A.Ya., Mamyrin, B.A., Silin, Yu.I., and Khabarin, L.V., The Helium Isotopes in the Oceanic Sediments, Geokhimiya, 1973, no. 2, pp. 284–288.

  • Kurat, G., Koeberl, C, Presper T., et al., Petrology and Geochemistry of Antarctic Micrometeorites, Geochim. Cosmochim. Acta., 1994, vol. 58, pp. 3879–3904.

    Article  Google Scholar 

  • Kyte, F.T. and Wasson, J.T., Accretion Rate of Extraterrestial Matter: Iridium Deposited 33–67 Millions Years Ago, Science, 1986, vol. 232, pp. 1225–1229.

    Article  Google Scholar 

  • Levasseur-Regourd, A.-Ch., Cometary Dust Unveiled, Science, 2005, vol. 304, pp. 1762–1763.

    Article  Google Scholar 

  • Levin, B.Yu. and Simonenko, A.N., The Earth among Dust and Stones, Priroda, 1973, no. 4, pp. 7–14.

  • Love, S.G. and Brownlee, D.E., A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust, Science, 1993, vol. 262, pp. 550–552.

    Article  Google Scholar 

  • Love, S.G., Joswiak, D.J., and Brownlee, D.E., Densities of Stratospheric Micrometeorites, Icarus, 1994, vol. 111, pp. 227–236.

    Article  Google Scholar 

  • Lowe, D.R., Byerly, G.R., Kyte, F.T., et al., Spherules Beds 3.47-3.24 Billion Years Old in the Barberton Greenstone Belt, South Africa: a Record of Large Meteorite Impacts and Their Influence on Early Crustal and Biological Evolution, Astrobiology, 2003, vol. 3, pp. 7–48.

    Article  Google Scholar 

  • Mamyrin, B.A. and Tolstikhin, I.N., Izotopy Geliya v Prirode (Helium Isotopes in Nature), Moscow: Energoizdat, 1981.

    Google Scholar 

  • Marcantonio, F., Higgins, S., Andersen, R.F., et al., Terrigenous Helium in Deep-Sea Sediments, Geochim. Cosmochim. Acta., 1998, vol. 62, pp. 1535–1543.

    Article  Google Scholar 

  • Marcantonio, F., Kumar, N., Stute, M., et al., A Comparative Study of Accumulation Rates Derived by He and Th Isotope Analysis of Marine Sediments, Earth Planet. Sci. Lett., 1995, vol. 133, pp. 549–555.

    Article  Google Scholar 

  • Matsuda, J. and Murota M., He and Ar Isotopic Studies on the Extraterrestrial Material in Deep-Sea Sediments, J. Geophys. Res., 1990, vol. 95, pp. 7111–7117.

    Article  Google Scholar 

  • Merrihue, C., Rare Gas Evidence for Cosmic Dust in Modern Pacific Red Clay, Ann. N.Y. Acad. Sci., 1964, vol. 119, pp. 351–367.

    Article  Google Scholar 

  • Messenger, S., Stadermann, F. J., Floss, C., et al., Isotopic Signatures of Presolar Materials in Interplanetary Dust, Space Science Reviews, 2003, vol. 106, pp. 155–172.

    Article  Google Scholar 

  • Miono, S., Nakayama, Y., Shoji, M., Tsuji, H., and Nakanishi, A., Origin of Microspherules in Paleozoic-Mesozoic Bedded Chert Estimated by PIXE Analysis, Nuclear Instruments and Methods in Physics Research, 1993, vol. B75, pp. 435–439.

    Google Scholar 

  • Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Luna pod Mikroskopom (The Moon under the Microscope), Moscow: Nauka, 2007, pp. 1–127.

    Google Scholar 

  • Mukhopadhyay, S. and Farley K.A., New Insights into the Carrier Phase(s) of Extraterrestrial 3He in Geologically Old Sediments, Geochim. Cosmochim. Acta., 2006, vol. 70, pp. 5061–5073.

    Article  Google Scholar 

  • Mukhopadhyay, S., Farley, K.A., and Montanari, A., A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3, Science, 2001, vol. 291, pp. 1952–1955.

    Article  Google Scholar 

  • Mukhopadhyay, S., Farley, K.A., and Montanari, A., A 35 Myr Record of Helium in Pelagic Limestones in Italy: Implications for Interplanetary Dust Accretion from the Early Maastrichtian to the Middle Eocene, Geochim. Cosmochim. Acta., 2001, vol. 65, pp. 653–669.

    Article  Google Scholar 

  • Murray, S. and Renard, A.F., Report on Deep-Sea Deposits Based on the Specimens Collected during the Voyage of H.M.S. Challenger in the Years 1872 to 1876., Neil. Edinburg, 1891, vol. 3.

  • Murthy, V.R., Elemental and Isotopic Abundances of Molybdenum in Some Meteorites, Geochim. Cosmochim. Acta., 1963, vol. 27, pp. 1171–1178.

    Article  Google Scholar 

  • Nier, A.O., Schlutter, D J., and Brownlee, D.E., Helium and Neon Isotopes in Deep Pacific Ocean Sediments, Geochim. Cosmochim. Acta., 1990, vol. 54, pp. 173–182.

    Article  Google Scholar 

  • Ozima, M., Takayanagi, M., Zashu, S., and Amari, S., High 3He/4He Ratio in Ocean Sediments, Nature, 1984, vol. 311, pp. 448–450.

    Article  Google Scholar 

  • Patterson, D.B., Farley, K.A., and Norman, M.D., 4He as a Tracer of Continental Dust: A 1.9 Million Year Record of Aeolian Flux to the West Equatorial Pacific Ocean, Geochim. Cosmochim. Acta., 1999, vol. 63, pp. 615–625.

    Article  Google Scholar 

  • Peurcker-Ehernbrink, B. and Ravizza, G., The Effect of Sampling Artifacts on Cosmic Dust Estimates: a Recalculation of Nonvolatile Tracers (Os, Ir), Geochim. Cosmochim. Acta., 2000, vol. 64, pp. 1965–1970.

    Article  Google Scholar 

  • Raukas, A., Investigation of Impact Spherules—a New Promising Method for the Correlation of Quaternary Deposits, Quaternary Intern., 2000, vol. 68–71, pp. 214–252.

    Google Scholar 

  • Rychagov, S.N., Glavatskikh, S.F., and Sandimirova, E.I., Ore and Silicate Magnetic Spherules as Indicators of the Structure and Fluid Regime of the Contemporary Baranskii Hydrothermal System (Iturup Island), Dokl. Akad. Nauk, 1997, vol. 356, pp. 671–681.

    Google Scholar 

  • Sandomirova, E.N., Glavatskikh, S.F., and Rychagov, S.N., Magnetic Spherules from the Volcanogenic Rocks of the Kurile Islands of the Southern Kamchatka, Vest. Kraunts. Nauki o Zemle, 2003, no. 1, pp. 135–140.

  • Schmitz, B., Lindstrom, M., Asaro, F., and Tassinari, M., Geochemistry of Meteorite-Rich Limestone Strata and Fossil Meteorites from the Lower Ordovician at Kinnekulle, Sweden, Earth Planet. Sci. Lett., 1996, vol. 145, pp. 31–48.

    Article  Google Scholar 

  • Sobotovich, E.V., Kosmicheskoe Veshchestvo v Zemnoi Kore (Cosmic Substance in the Earth’s Crust), Moscow: Atomizdat, 1976, pp. 1–159.

    Google Scholar 

  • Stadermann, F.J., Christine Floss, Ch., and Brigitte Wopenka, B., Circumstellar Aluminum Oxide and Silicon Carbide in Interplanetary Dust Particles, Geochim. Cosmochim. Acta., 2006, vol. 70, pp. 6168–6179.

    Article  Google Scholar 

  • Tolstikhin, I.N., Helium Isotopes in the Earth’s Interior and in the Atmosphere: a Degassing Model of the Earth, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 88–96.

    Article  Google Scholar 

  • Winckler, G. and Fisher, H., 30000 Years of Cosmic Dust in Antarctic Ice, Science, 2006, vol. 313, p. 491.

    Article  Google Scholar 

  • Yada, I., Nakamura, T., Takaoka, N., et al., The Global Accretion Rate of Extraterrestrial Materials in the Last Glacial Period Estimated from the Abundance of Micrometeorites in Antarctic Glacier Ice, Earth Planets Space., 2004, vol. 56, pp. 67–79.

    Google Scholar 

  • Zakharov, V.A., Lapukhov, A.L., and Shenfil, O.V., The Iridium Anomaly at the Jurassic-Cretaceous Boundary in the North of Siberia, Geol. i Geofiz., 1993, no. 1, pp. 102–109.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Grachev, 2010, published in Fizika Zemli, 2010, No. 11, pp. 3–13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grachev, A.F. On the nature of cosmic dust in sedimentary rocks. Izv., Phys. Solid Earth 46, 911–921 (2010). https://doi.org/10.1134/S1069351310110017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351310110017

Keywords

Navigation