Skip to main content
Log in

Joint three-dimensional inversion of magnetotelluric and magnetovariational data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The problem of quantitative three-dimensional interpretation of the magnetotelluric (MT) data ranks among the most difficult problems in electromagnetic (EM) geophysics. Our paper presents a new rigorous numerical method for MT inversion, based on the integral equations technique. An important feature of the proposed method is the calculation of the Frechet derivative with the aid of a quasi-analytical approximation with an inhomogeneous background. This approach simplifies the algorithm of inversion and requires only a single forward modeling on each iteration. We have also developed a method for a joint inversion of MT and magnetovariational (MV) data. We show in the present paper that the joint inversion of MT impedances and the Wiese-Parkinson vectors can automatically allow for the static shift in the observed data, which is caused by the geoelectric inhomogeneities contained in the near-surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Alumbaugh and G. A. Newman, “Three-Dimensional Massively Parallel Inversion — II. Analysis of a Cross-Well Electromagnetic Experiment,” Geophys. J. Int. 128, 355–363 (1997).

    Article  Google Scholar 

  2. M. N. Berdichevsky and V. I. Dmitriev, Magnetotelluric in the Context of the Theory of Ill-Posed Problems (Soc. Explor. Geophys., Tulsa, OK, 2002).

    Book  Google Scholar 

  3. M. N. Berdichevsky and V. I. Dmitriev V.I., Models and Methods of Magnetotellurics (Springer-Verlag, Berlin, 2008).

    Book  Google Scholar 

  4. M. N. Berdichevsky and M. S. Zhdanov, Advanced Theory of Deep Geomagnetic Sounding, (Elsevier Science & Technology, Oxford, GB, 1984).

    Google Scholar 

  5. S.C. Constable, R. L. Parker, and C. G. Constable, “Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data,” Geophysics 52(3), 289–300 (1987).

    Article  Google Scholar 

  6. N. G. Golubev and M. S. Zhdanov, “Three-Dimensional Interpretation of Magnetotelluric Data Collected for Mineral Exploration in Voisey’s Bay, Labrador, Canada,” in Proceedings of 2000 CEMI Annual Meeting, Salt Lake City, UT, 2000, pp. 559–594.

  7. N. G. Golubev, M. S. Zhdanov, K. Matsuo, and T. Negi, “Three-Dimensional Inversion of Magnetotelluric Data over Minami-Noshiro Oil Field,” in Proceedings of the Second International Symposium of Three-Dimensional Electromagnetics, University of Utah, Salt Lake City, UT, 1999, pp. 305–308.

  8. A. V. Gribenko and M. S. Zhdanov, “Regularized Focusing Inversion of Marine CSEM Data using Minimum Vertical Support Stabilizer,” in Expanded Abstracts of the 77th SEG Annual International Meeting, San Antonio, TX, 2007, pp. 579–583.

  9. G. W. Hohmann, “Three-Dimensional Induced Polarization and EM Modeling,” Geophysics 40, 309–324 (1975).

    Article  Google Scholar 

  10. G. Hursán and M. S. Zhdanov, “Contraction Integral Equation Method in Three-Dimensional Electromagnetic Modeling,” Radio Sci. 37(6), 1089 (2002).

    Article  Google Scholar 

  11. R. L. Mackie and M. D. Watts, “The Use of 3D Magnetotelluric Inversion for Exploration in Complex Geologic Environments: Potential Pitfalls and Real World Examples,” Eos Transactions, 85 (2004), GP14A-01.

  12. G. A. Newman and D. L. Alumbaugh, 3D EM Modeling and Inversion on Massively Parallel Computers, (Sandia Report, London, 1996).

    Google Scholar 

  13. G. A. Newman and D. L. Alumbaugh, “Three-Dimensional Massively Parallel Inversion—I. Theory,” Geophys. J. Int. 128(2), 355–363 (1997).

    Article  Google Scholar 

  14. O. N. Portniaguine and M. S. Zhdanov, “Focusing Geophysical Inversion Images,” Geophysics 64, 874–887 (1999).

    Article  Google Scholar 

  15. Y. Sasaki, “Full 3D Inversion of Electromagnetic Data on PC,” J. Appl. Geophys. 46(1), 45–54 (2001).

    Article  Google Scholar 

  16. W. Siripunvaraporn, G. Egbert, Y. Lenbury, and M. Uyeshima, “Three-Dimensional Magnetotelluric Inversion: Data-Space Method,” Phys. Earth Planet. Inter. 150, 3–14 (2005).

    Article  Google Scholar 

  17. W. Siripunvaraporn, M. Uyeshima, and G. Egbert, “Three-Dimensional Inversion for Network-Magnetotelluric Data,” Earth, Planets Space 56, 893–902 (2004).

    Google Scholar 

  18. A. N. Tikhonov and V. N. Arsenin, Solution of Ill-Posed Problems (V. H. Winston and Sons, Wiley, New York, 1977).

    Google Scholar 

  19. P. E. Wannamaker, “Advances in Three-Dimensional Magnetotelluric Modeling Using Integral Equations,” Geophysics 56, 1716–1728 (1991).

    Article  Google Scholar 

  20. P. Weidelt, “EM Induction in Three-Dimensional Structures,” Geophysics, 41, 85–109 (1975).

    Google Scholar 

  21. M. S. Zhdanov, Geophysical Electromagnetic Theory and Methods (Elsevier, Amsterdam, 2009).

    Google Scholar 

  22. M. S. Zhdanov, Geophysical Inverse Theory and Regularization Problems (Elsevier Science B.V., Amsterdam, 2002).

    Google Scholar 

  23. M. S. Zhdanov, Theory of Inverse Problems and Regularization in Geophysics (Nauchnyi Mir, Moscow, 2007) [in Russian].

    Google Scholar 

  24. M. S. Zhdanov and S. Fang, “3D Quasi-Linear Electromagnetic Inversion,” Radio Sci. 31, 741–754 (1996).

    Article  Google Scholar 

  25. M. S. Zhdanov and S. Fang, “3D Quasi-Linear Electromagnetic Modeling and Inversion,” in Three-Dimensional Electromagnetics, Ed. by M. Oristaglio and B. Spies (Soc. Explor. Geophys., Tulsa, 1999), pp. 233–255.

    Chapter  Google Scholar 

  26. M. S. Zhdanov, S. Fang, and G. Hursán, “Electromagnetic Inversion Using Quasi-Linear Approximation,” Geophysics 65, 1501–1513 (2000).

    Article  Google Scholar 

  27. M. S. Zhdanov and G. Hursán, “3D Electromagnetic Inversion Based on Quasi-Analytical Approximation,” Inverse Problems 16, 1297–1322 (2000).

    Article  Google Scholar 

  28. M. S. Zhdanov, A. Gribenko, and M. Cuma, “Regularized Focusing Inversion of Marine CSEM Data Using Minimum Vertical Support Stabilizer,” in Proceedings of the CEMI Annual Meeting, Salt Lake City, UT, 2007, pp. 345–371.

  29. M. S. Zhdanov and G. W. Keller, The Geoelectrical Methods in Geophysical Exploration (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.S. Zhdanov, V.I. Dmitriev, A.V. Gribenko, 2010, published in Fizika Zemli, 2010, No. 8, pp. 12–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdanov, M.S., Dmitriev, V.I. & Gribenko, A.V. Joint three-dimensional inversion of magnetotelluric and magnetovariational data. Izv., Phys. Solid Earth 46, 655–669 (2010). https://doi.org/10.1134/S1069351310080033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351310080033

Keywords

Navigation