Skip to main content
Log in

Petromagnetic and paleomagnetic characterization deposits at Mesozoic/Cenozoic boundary: The Tetritskaro section (Georgia)

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Petromagnetic and magnetostratigraphic characteristics are obtained for the Tetritskaro section. The boundary layer at the Mesozoic/Cenozoic (K/T) boundary is fixed primarily by an abrupt rise in the paramagnetic magnetization (total Fe concentration) and, to a lesser degree, by an increase in the concentration of such magnetic minerals as goethite, hemoilmenite, and magnetite. The along-section distribution of titanomagnetite of volcanic origin and metallic iron of cosmic origin does not correlate with the K/T boundary and lithologic properties of the sediments.

The boundary of the Mesozoic and Cenozoic geological eras lies within the reversed polarity chron C29r and is marked by an abrupt rise in the geomagnetic field paleointensity and an instability of paleomagnetic directions, rather than by a polarity change. The accumulation time of the boundary clay layer is about 1.5–2 kyr, while abrupt changes in the paleointensity and direction of the geomagnetic field encompass 30–40 kyr. Such long occurrence intervals of the events in question cannot be related to a short-term impact phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sh. Adamia., N. Salukvadze, M. Nazarov, et al., “Geological Events at the Cretaceous-Paleogene Boundary in Georgia (Caucasus),” Geol. Carpath. 23(3), 35–43 (1993).

    Google Scholar 

  2. W. Alvarez, A. Asaro, and A. Montanari, “Iridium Profile for 10 Million Years across the Cretaceous-Tertiary Boundary at Gubbio (Italy),” Science 250, 1700–1703 (1990).

    Article  Google Scholar 

  3. V. I. Bagin, T. I. Gendler, L. G. Dainyak, and A. V. Sukhorada, “Thermal Transformations in Biotite,” Fiz. Zemli, No. 9, 66–76 (1976).

  4. V. I. Bagin, T. I. Gendler, L. G. Dainyak, and A. V. Sukhorada, “Stability of Magnetic Products of Biotite Decomposition,” Fiz. Zemli, No. 2, 71–78 (1977).

  5. V. I. Bagin, T. S. Gendler, and T. A. Avilova, Magnetism α-Oxides and Hydroxides of Iron (IFZ AN SSSR, Moscow, 1988) [in Russian].

    Google Scholar 

  6. J. Besse and V. Courtillot, “Apparent and True Polar Wander and Geometry of the Geomagnetic Field over the Last 200 Myr,” J. Geophys. Res. 107 (2002).

  7. B. V. Burov, D. K. Nourgaliev, and P. G. Yasonov, Paleomagnetic Analysis (KGU, Kazan, 1986) [in Russian].

    Google Scholar 

  8. S. C. Cande and D. V. Kent, “Revised Calibration of the Geomagnetic Polarity Time Scale for the Late Cretaceous and Cenozoic, J. Geophys. Res. 100, 6093–6095 (1995).

    Article  Google Scholar 

  9. R. Day, M. Fuller and V. A. Schmidt, “Hysteresis Properties of Titanomagnetites: Grain-Size and Compositional Dependence,” Phys. Earth Planet. Inter. 13 260–266 (1977).

    Article  Google Scholar 

  10. D. J. Dunlop, “Theory and Application of the Day Plot (M rs/M s versus H cr/H c). 1. Theoretical Curves and Tests Using Titanomagnetite Data,” J. Geophys. Res. 107, 10.1029/2001JB000486 (2002a).

  11. D. J. Dunlop, “Theory and Application of the Day Plot (M rs/M s vs. H cr/H c). 2. Application to Data for Rocks, Sediments and Soils, J. Geophys. Res. 107, 10.1029/2001JB000487 (2002b).

  12. B. D. Ellwood, W. D. MacDonald, C. Wheeler, and S. L. Benoist, “The K-T Boundary in Oman: Identified Using Magnetic Susceptibility Field Measurements with Geochemical Information,” Earth Planet. Sci. Lett. 206, 529–540 (2003).

    Article  Google Scholar 

  13. R. E. Ernst and K. L. Buchan, “Recognizing Mantle Plumes in the Geological Record,” Annu. Rev. Earth Planet. Sci. 31, 469–523 (2003).

    Article  Google Scholar 

  14. A. K. Gapeev and V. A. Tselmovich, “Microstructure and Composition Natural and Synthetic Titanomagnetites That Experienced Multiphase Oxidation,” Fiz. Zemli, No. 10, 42–49 (1988).

  15. A. F. Grachev, O. A. Korchagin, H. A. Kollmann, et al., “A New Look at the Nature of the Transitional Layer at the K/T Boundary near Gams, Eastern Alps, Austria, and the Problem of the Mass Extinction of the Bota,” Russ. J. Earth Sci. 7, ES6001. doi: 10.2205/2005ES000189 (2005).

  16. F. M. Gradstein, J. Ogg, and A. G. Smith, A Geological Time Scale (Univ. Press, Cambridge, 2004).

    Google Scholar 

  17. H. J. Mauritsch, “Der Stand der Palaomagnetischen Forschung in den Ostaplen,” Leobner Hefte fur Angewandte Geophys. 1, 141–160 (1986).

    Google Scholar 

  18. P. L. McFadden and M. McElhinny, “Classification of Reversal Test in Paleomagnetism, Geophys. J. Int. 103, 725–729 (1990).

    Article  Google Scholar 

  19. E. A. Molostovsky, V. A. Fomin, and D. M. Pechersky, “Sedimentogenesis in Maastrichtian-Danian Basins of the Russian Plate and Adjacent Areas in the Context of Plume Geodynamics,” Russ. J. Earth Sci. 8, ES6001. doi: 10.2205/2006ES000206 (2006).

  20. T. Nagata, Rock-Magnetism (Maruzen, Tokyo, 1961; IL, Moscow, 1965) [in Russian].

    Google Scholar 

  21. D. M. Pechersky, D. K. Nourgaliev, and Z. V. Sharonova, “Magnetolithologic and Magnetomineralogical Characteristics of Sediments at the Mesozoic/Cenozoic Boundary: The Koshak Section (Mangyshlak Peninsula),” Fiz. Zemli, No. 11, 99–112 (2006) [Izvestiya, Phys. Solid Earth 42, 957–970 (2006)].

  22. D. M. Pechersky and A. V. Garbuzenko, “The Mesozoic-Cenozoic Boundary: Paleomagnetic Characteristic, Russ. J. Earth Sci. 7(2) (2005).

  23. D. M. Pechersky, A. F. Grachev, D. K. Nourgaliev, et al., “Magnetolithologic and Magnetomineralogical Characteristics of Deposits at the Mesozoic/Cenozoic Boundary: Gams Section (Austria),” Russ. J. Earth Sci. (2006).

  24. C. Richter C. and B. A. Van der Pluijm, “Separation of Paramagnetic and Ferrimagnetic Susceptibilities Using Low Temperature Magnetic Susceptibilities and Comparison with High Field Methods,” Phys. Earth Planet. Int. 822, 111–121 (1994).

    Google Scholar 

  25. R. Rocchia, D. Boclet, Ph. Bonte, et al., “The Cretaceous- Tertiary Boundary at Gubbio Revisited: Vertical Extent of the Ir Anomaly,” Earth Planet. Sci. Lett. 99, 206–219 (1990).

    Article  Google Scholar 

  26. P. Rochette, M. Jackson, and C. Aubourg, “Rock Magnetism and Interpretation of Anisotropy of Magnetic Susceptibility, Rev. Geophys. 30, 209–226 (1992).

    Article  Google Scholar 

  27. A. B. Veimarn, D. P. Naidin, L. F. Kopaevich, et al., Global Catastrophic Events and Implications for Stratigraphic Correlations of Sedimentary Basins of Various Types (MGU, Moscow, 1998) [in Russian].

    Google Scholar 

  28. P. G. Yasonov, D. K. Nourgaliev, B. V. Bourov, and F. Heller, “A Modernized Coercivity Spectrometer,” Geol. Carpath. 49(3), 224–226 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Pechersky.

Additional information

Original Russian Text © D.M. Pechersky, B.Z. Asanidze, D.K. Nourgaliev, Z.N. Sharonova, 2009, published in Fizika Zemli, 2009, No. 2, pp. 49–65.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechersky, D.M., Asanidze, B.Z., Nourgaliev, D.K. et al. Petromagnetic and paleomagnetic characterization deposits at Mesozoic/Cenozoic boundary: The Tetritskaro section (Georgia). Izv., Phys. Solid Earth 45, 134–149 (2009). https://doi.org/10.1134/S1069351309020049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351309020049

PACS numbers

Navigation