Skip to main content
Log in

Aftershock sequences of the strongest earthquakes of the world: Stages of development

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Analysis of aftershock sequences of the strongest earthquakes of the world showed that previously discovered empirical relations are not universal. Båth’s law is found to be invalid in the majority of cases, while Omori’s law is valid only in a short initial interval of aftershock activity. It is supposed that aftershocks of the strongest earthquakes of normal depths are related initially to fracture of zones that preserved their integrity after the rupture in the source of the main shock and at a later stage to relaxation of stresses in the medium adjacent to the rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Arefiev and R. E. Tatevossian, “Structure and Seismic Regime of the Source Zone of the Spitak Earthquake,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 11, 74–85 (1991).

  2. S. S. Arefiev, K. G. Pletnev, R. E. Tatevossian, et al., “The Racha Earthquake of 1991: Results of In Situ Seismological Observations,” Fiz. Zemli, No. 3, 12–23 (1993).

  3. M. Båth, “Lateral Inhomogeneities of the Upper Mantle,” Tectonophysics, 2(6), 483–514 (1965).

    Article  Google Scholar 

  4. Y. Ben-Zion and V. Lyakhovsky, “Analysis of Aftershocks in a Lithospheric Model with Seismogenic Zone Governed by Damage Rheology,” Geophys. J. Int., 165, 197–210 (2006).

    Article  Google Scholar 

  5. CMT Catalog (http://www.seismology.harvard.edu).

  6. S. Das and C. H. Scholz, “Theory of Time-Dependent Rupture in the Earth,” J. Geophys. Res. 86, 6039–6051 (1981).

    Article  Google Scholar 

  7. A. M. Dziewonski and J. H. Woodhouse, “An Experiment in Systematic Study of Global Seismicity: Centroid-Moment Tensor Solutions for 201 Moderate and Large Earthquakes of 1981,” J. Geophys. Res. 88(B4), 3247–3271 (1983).

    Article  Google Scholar 

  8. V. G. Gitis, R. E. Tatevossian, and A. P. Vainshtock, “Maximum Expected Magnitude Assessment in a Geo Computer Environment,” Natural Hazards 17, 225–250 (2000).

    Article  Google Scholar 

  9. S. J. Gross and C. Kisslinger, “Tests of Models of Aftershock Rate Decay,” Bull. Seismol. Soc. Am. 84, 1571–1579 (1994).

    Google Scholar 

  10. T. Hirabayashi, K. Ito, and T. Yoshii, “Multifractal Analysis of Earthquakes,” Pure Appl. Geophys, 138, 591–610 (1992).

    Article  Google Scholar 

  11. International Seismological Centre, On-Line Bulletin (Int. Seismol. Centre, Thatcham, 2001) (http://www.isc.ac.uk).

  12. C. Kisslinger and L. M. Jones, “Properties of Aftershock Sequences in Southern California,” J. Geophys. Res. 96, 11 947–11 958 (1991).

    Article  Google Scholar 

  13. B. V. Kostrov and Sh. Das, Principles of Earthquake Source Mechanics (Univ. Press, Cambridge, 1988).

    Google Scholar 

  14. K. I. Kuznetsova, “Seismicity as a Stochastic Process with Physical Parameters,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 12, 16–28 (1983).

  15. K. I. Kuznetsova, Zh. Ya. Aptekman, N. V. Shebalin, and V. V. Shteinberg, “Aftershocks of Aftereffect and Aftershocks of Development of the Source Zone of the Daghestan Earthquake,” in Physics of Earthquakes (Nauka, Moscow, 1976), pp. 94–113 [in Russian].

    Google Scholar 

  16. W. Marzocchi and L. Sandri, “A Review and New Insights on the Estimation of the b-Value and Its Uncertainty,” Ann. Geophys. 46(6), 1271–1282 (2003).

    Google Scholar 

  17. N. Mizaei, M.-T. Gao, Y.-T. Chen, and J. Wang, “A Uniform Catalog of Earthquakes for Seismic Hazard Assessment in Iran,” Acta Seismologica Sinica, 10(6), 713–726 (1997).

    Article  Google Scholar 

  18. G. M. Molchan and O. E. Dmitrieva, “Identification of Aftershocks: A Review and New Approaches,” in Computational Seismology, Vol. 24, 19–50 (1991).

    Google Scholar 

  19. C. Narteau, P. Shebalin, and M. Holschneider, “Temporal Limits of the Power Law Aftershock Decay Rate,” J. Geophys. Res. 107 (2002).

  20. A. Nur and J. R. Booker, “Aftershocks Caused by Pore Fluid Flow,” Science 175, 885–887 (1972).

    Article  Google Scholar 

  21. F. Omori, “On the Aftershocks,” Rep. Imp. Earthquake Invest. Comm. 2, 103–139 (1894).

    Google Scholar 

  22. G. Ouillon and D. Sornette, “Magnitude-Dependent Omori Law: Theory and Empirical Study,” J. Geophys. Res., 110 (2005).

  23. V. A. Petrov, “On the Recurrence Law of Earthquakes,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 8, 92–93 (1981).

  24. A. G. Prozorov, “Remote Aftershocks as Precursors of Earthquakes in Southern California,” Computational Seismology, Vol. 14, 20–26 (1982).

    Google Scholar 

  25. Yu. V. Riznichenko, “On the Treatment of the Earthquake Recurrence Law in Terms of Energy,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 10, 7–16 (1965).

  26. R. Shcherbakov and D. L. Turcotte, “A Modified Form of Båth’s Law,” Bull. Seismol. Soc. Am. 94, 1968–1975 (2004).

    Article  Google Scholar 

  27. R. Shcherbakov, D. L. Turcotte, and J. B. Rundle, “Scaling Properties of the Parkfield Aftershock Sequence,” Bull. Seismol. Soc. Am. 96(4), 376–384 (2006).

    Article  Google Scholar 

  28. V. B. Smirnov and A. V. Ponomarev, “Seismic Regime Relaxation Properties from In Situ and Laboratory Data,” Fiz. Zemli, No. 10, 26–36 (2004) [Izvestiya, Phys. Solid Earth 42 (10), 807–816 (2004)].

  29. R. E. Tatevossian, E. A. Rogozhin, and S. S. Arefiev, “Earthquake Intensity Estimation from Seismic Effects in the Natural Environment: General Principles and Examples of Application,” in Problems of Engineering Seismology (2007).

  30. S. D. Vinogradov, “Aftershock Sequences as Evidence for Relaxation Processes in a Region Containing an Earthquake Source,” Fiz. Zemli, No. 2, 59–62 (2008) [Izvestiya, Phys. Solid Earth 44 (2), 138–141 (2008)].

  31. S. Weimer and K. Katsumata, “Spatial Variability of Seismicity Parameters in Aftershock Zones,” J. Geophys. Res. 104, 13135–13151 (1999).

    Article  Google Scholar 

  32. D. Wells and K. J. Coppersmith, “New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement,” Bull. Seismol. Soc. Am. 84(4), 974–1002 (1994).

    Google Scholar 

  33. P. Wessel and W. Smith, “The Generic Mapping Tools,” GMT 4, 1 (2007).

    Google Scholar 

  34. G. Zöller, S. Hainzl, M. Holschneider, and Y. Ben-Zion, “Aftershocks Resulting from Creeping Sections in a Heterogeneous Fault,” Geophys. Res. Lett. 32 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Tatevossian.

Additional information

Original Russian Text © R.E. Tatevossian, Zh.Ya. Aptekman, 2008, published in Fizika Zemli, 2008, No. 12, pp. 3–23.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatevossian, R.E., Aptekman, Z.Y. Aftershock sequences of the strongest earthquakes of the world: Stages of development. Izv., Phys. Solid Earth 44, 945–964 (2008). https://doi.org/10.1134/S106935130812001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935130812001X

PACS numbers

Navigation