Skip to main content
Log in

Magnetic properties of intrusive traps of the Siberian platform: Evidence for a self-reversal of the natural remanent magnetization

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A combined magnetomineralogical analysis of a doleritic collection gathered from four natural outcrops in the mouth area of the Stolbovaya River revealed a spinodal pattern of the decomposition of a magnetite-ulvospinel solid solution (the stage of the “modulated structure” formation) in the ferromagnetic fraction of samples. Homogenization of exsolution structures during thermal treatment of the majority of the collected samples is shown to involve the effect of partial self-reversal of thermoremanent magnetization. A distinct dependence of the effect on the level of internal elastic stresses suggests that a reverse component of J n can arise during some phases of the spinodal stage of the solid solution decomposition in natural titanomagnetites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Barsanov, V. K. Garanin, V. A. Zhilyaeva, et al., “Coercivity Spectra of Ilmenites from Kimberlites,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 97–107 (1977).

  2. E. Z. Basta, “Natural and Synthetic Titanomagnetites (the System Fe3O4-Fe2TiO4-FeTiO3),” Neues Jahrbuch Mineral 94, 1017–1048 (1960).

    Google Scholar 

  3. K. P. Belov, Magnetic Transformations (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

  4. A. S. Bolshakov, B. N. Mel’nikov, and D. M. Dashevskaya, “Partial Self-Reversal of Magnetization in Kovdor Magnetites,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 6, 103–109 (1973).

  5. J. W. Cahn, “The Latter Stages of Spinodal Decomposition and the Beginnings of Particle Coarsening,” Acta Metall. 14(12), 1685–1692 (1966).

    Article  Google Scholar 

  6. J. W. Cahn, “Spinodal Decomposition,” Trans. Met. Soc. AIME 242(2), 166–180 (1968).

    Google Scholar 

  7. P. Dankers, “Relationship between Median Destructive Field and Remanent Coercive Forces for Dispersed Natural Magnetite, Titanomagnetite and Hematite,” Geophys. J. R. Astron. Soc. 84, 447–461 (1981).

    Google Scholar 

  8. A. K. Gapeev and S. K. Gribov, “Partial Self-Reversal of the Thermoremanent Magnetization Created by Titanomagnetites Subjected to Multiphase Oxidation,” Fiz. Zemli, No. 9, 3–12 (2002) [Izvestiya, Phys. Solid Earth 38, 713–722 (2002)].

  9. A. K. Gapeev and S. K. Gribov, “Characteristic Features of X-ray Diffraction on Natural Titanomagnetites after Their Spinodal Decomposition,” Fiz. Zemli, No. 12, 77–83 (2006) [Izvestiya, Phys. Solid Earth 42, 1038–1043 (2006)].

  10. V. K. Garanin, V. A. Zhilyaeva, and G. P. Kudryavtseva, “Possible Application of Structurally Sensitive Magnetic Characteristics to the Study of Ilmenites of the MgTiO4-FeTiO3-Fe2O3 System,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 6, 104–111 (1978).

  11. A. D. Havard and M. Lewis, “Reversed Partial Thermo-Magnetic Remanence in Natural and Synthetic Titano-Magnetites,” Geophys. J. R. Astron. Soc. 10(1), 59–68 (1965).

    Google Scholar 

  12. F. Heller and N. Petersen, “Self-Reversal Explanation for the Laschamp/Olby Geomagnetic Field Excursion,” Phys. Earth. Planet. Inter. 30(4), 358–372 (1982).

    Article  Google Scholar 

  13. K. A. Hoffman, “Partial Self-Reversal in Basalts Containing Mildly Low-Temperature Oxidized Titanomagnetite,” Phys. Earth. Planet. Inter. 30(4), 357 (1982).

    Article  Google Scholar 

  14. K. A. Hoffman, “Self-Reversal of Thermoremanent Magnetization in the Ilmenite-Hematite System: Order-Disorder, Symmetry and Spin Alignment,” J. Geophys. Res., No. B7, 10 883–10 895 (1992).

    Google Scholar 

  15. Y. Ishikawa and Y. Syono, “Order-Disorder Transformation and Reverse Thermo-Remanent Magnetism in the FeTiO3-Fe2O3 System,” J. Phys. Chem. Solids 24, 517–528 (1963).

    Article  Google Scholar 

  16. N. R. Khisina, “Estimation of Subsolidus Cooling Rates of Titanomagnetites Using Decomposition Parameters of a Solid Solution,” Geokhimiya, No. 5, 704–711 (1979).

  17. G. P. Kudryavtseva, V. K. Garanin, V. A. Zhilyaeva, and V. I. Trukhin, Magnetism and Mineralogy of Natural Ferromagnetic Materials (MGU, Moscow, 1982) [in Russian].

    Google Scholar 

  18. A. P. Lebedev, “Trap Formation of the Podkamennaya Tunguska River Basin.” in Petrography of Eastern Siberia (AN SSSR, 1962) Vol. 1, pp. 71–117 [in Russian].

    Google Scholar 

  19. B. N. Mel’nikov, Self-Reversal of Remanent Magnetization in Deformed Ferromagnetic Materials, Extended Abstract of Cand. Sci.?(Phys.-Math.) Dissertation, Inst. Phys. Earth Acad. Sci. USSR, Moscow, 1974.

    Google Scholar 

  20. B. N. Mel’nikov and N. R. Khisina, “Spinodal Decomposition and the Related Partial Self-Reversal of Magnetization in Titanomagnetites of African Rift Zones,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 10, 84–92 (1976).

  21. R. A. Minibaev, V. S. Myasnikov, and G. N. Petrova, “On One Case of Remanent Magnetization Self-Reversal,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 8, 96–101 (1966).

    Google Scholar 

  22. N. Petersen and U. Bleil, “Self Reversal of Remanent Magnetization in Synthetic Titanomagnetites,” J. Geophys. 39(6), 965–977 (1973).

    Google Scholar 

  23. J. Petherbridge, “A Magnetic Coupling Occurring in Partial Self-Reversal of Magnetism and Its Association with Increased Magnetic Viscosity in Basalts,” Geophys. J. R. Astron. Soc. 50(2), 395–406 (1977).

    Google Scholar 

  24. M. Prevot, K. A. Hoffman, A. Goguitchaichvili, et al., “The Mechanism of Self-Reversal of Thermoremance in Natural Hemoilmenite Crystals: New Experimental Data and Model,” Phys. Earth Planet. Inter. 126(1–2), 75–92 (2001).

    Article  Google Scholar 

  25. P. J. C. Ryall and J. M. Ade-Hall, “Laboratory-Induced Self-Reversal of Thermoremanent Magnetization in Pillow-Basalts,” Nature 257(5522), 117–118 (1975).

    Article  Google Scholar 

  26. P. J. C. Ryall and J. M. Hall, “Laboratory Alteration of Titanomagnetites in Submarine Pillow Lavas,” Can. J. Earth Sci. 16(3), 496–504 (1979).

    Article  Google Scholar 

  27. V. P. Shcherbakov, A. S. Bol’shakov, and B. N. Mel’nikov, “A Possible Mechanism Underlying the Anomalous Temperature Dependence of Remanence in Ferromagnetic Materials,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 1, 71–77 (1976).

  28. V. P. Shcherbakov and V. V. Shcherbakova, “Criteria for the Identification of the Domain Structure of Ferromagnetic Grains in Rock Minerals,” in Geomagnetic Approach to the Solution of Geophysical Problems (Nauka, Moscow, 1980), pp. 136–148 [in Russian].

    Google Scholar 

  29. V. I. Trukhin, V. A. Zhilyaeva, D. I. Savrasov, et al., “Self-Reversal of Thermoremanent Magnetization in Rocks of Yakutian Kimberlite Pipes,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 11, 78–89 (1984).

  30. V. I. Trukhin, V. A. Zhilyaeva, N. N. Zinchuk, and N. N. Romanov, Magnetism of Kimberlites and Traps (MGU, Moscow, 1989) [in Russian].

    Google Scholar 

  31. V. I. Trukhin, V. A. Zhilyaeva, E. F. Tomilin, and A. N. Konilov, “Properties and Possible Mechanism of Thermal Remanent Magnetization Reversal of Synthesized Hematite-Ilmenite,” Fiz. Zemli, No. 2, 52–59 (1997) [Izvestiya, Phys. Solid Earth 33, 132–138 (1997)].

  32. V. I. Trukhin, V. A. Zhilyaeva, and E. S. Kurochkina, “Self-Reversal of Magnetization in Natural Titanomagnetites,” Fiz. Zemli, No. 6, 42–53 (2004) [Izvestiya, Phys. Solid Earth 40, 491–501 (2004)].

  33. P. Tucker and W. O’ Reilly, “Reversed Thermoremanent Magnetization in Synthetic Titanomagnetites As a Consequence of High Temperature Oxidation,” J. Geomagn. Geoelectr. 32(6), 341–355 (1980).

    Google Scholar 

  34. S. Uyeda, “Thermo-Remanent Magnetism As a Medium of Paleomagnetism, with Special Reference to Reverse Thermo-Remanent Magnetism,” Jpn. J. Geophys. 2, 1–123 (1958).

    Google Scholar 

  35. R. V. Veselovsky, Y. Gallet, and V. E. Pavlov, “Paleomagnetism of Traps in the Podkamennaya Tunguska and Kotui River Valleys: Implications for the Post-Paleozoic Relative Movements of the Siberian and East European Platforms,” Fiz. Zemli, No. 10, 78–94 (2003) [Izvestiya, Phys. Solid Earth 39, 856–872 (2003)].

  36. E. A. Vincent, J. B. Wright, R. Chevallier, and S. Mathieu, “Heating Experiments on Some Natural Titanoferous Magnetites,” Mineral. Mag. 31(239), 624–655 (1957).

    Article  Google Scholar 

  37. V. A. Zhilyaeva, L. V. Kolesnikov, and G. N. Petrova, “Partial Self-Reversal of Thermoremanent Magnetization in Natural Titanomagnetites of the Series FeFe2O4-MgTiO4,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 10, 59–70 (1970).

  38. V. A. Zhilyaeva, L. V. Kolesnikov, G. N. Petrova, and L. V. Tikhonov, “Self-Reversal in Mg-Bearing Titanomagnetites and Its Physical Origin,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 6, 48–56 (1971).

  39. V. A. Zhilyaeva and G. P. Kudryavtseva, “Self-Reversal of Thermoremanent Magnetization during Incomplete Homogenization of Decomposition Structures of the FeFe2O4-MgAl2O4 Solid Solution,” Geomagn. Aeron. 14(4), 715–720 (1974).

    Google Scholar 

  40. V. A. Zhilyaeva, G. P. Kudryavtseva, and N. E. Sergeeva, “Dependence of Coercivity Spectra on the Composition and Structure of Ferromagnetic Materials,” Geomagn. Aeron. 14(5), 892–898 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.K. Gapeev, S.K. Gribov, 2008, published in Fizika Zemli, 2008, No. 10, pp. 75–92.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gapeev, A.K., Gribov, S.K. Magnetic properties of intrusive traps of the Siberian platform: Evidence for a self-reversal of the natural remanent magnetization. Izv., Phys. Solid Earth 44, 822–838 (2008). https://doi.org/10.1134/S1069351308100108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351308100108

PACS numbers

Navigation