Skip to main content
Log in

Microseismic field affected by local geological heterogeneities and microseismic sounding of the medium

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Experiments and numerical model studies have shown that heterogeneities of the Earth’s crust distort the spectrum of the low frequency microseismic field, decreasing spectral amplitudes of a specific frequency f at the Earth’s surface over high velocity heterogeneities and increasing them above low velocity heterogeneities. The frequency f is connected with the depth of a heterogeneity H and the velocity of the fundamental mode of Rayleigh waves V R (f) through the relation H = 0.5 V R (f)/f. The low frequency microseismic field is considered as the superposition of trains of Rayleigh fundamental modes with different frequency spectra. The paper proposes an experimentally tested technology enabling the determination of the deep structure of complex geological objects using data on the microseismic background field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Aleksandrov and L. N. Rykunov, “Noise Monitoring in Southern Iceland,” Dokl. Akad. Nauk 326(5), 808–810 (1992).

    Google Scholar 

  2. S. I. Aleksandrov and K. M. Mirzoev, “Monitoring of Microseismic Emission in an Oil Field,” in Geotomography Problems, Ed. by A. V. Nikolaev, I. N. Galkin, and I. A. Sanina (Nauka, Moscow, 1997), pp. 191–200 [in Russian].

    Google Scholar 

  3. L. E. Alsop, “Transmission and Reflection of Love Waves at the Vertical Discontinuity,” J. Geophys. Res. 71, 3969–3984 (1966).

    Google Scholar 

  4. L. E. Alsop, A. S. Goodman, and S. Gregersen, “Reflection and Transmission of Inhomogeneous Waves with Particular Application to Rayleigh Waves,” Bull. Seismol. Soc. Am. 64, 1635–1652 (1974).

    Google Scholar 

  5. M. W. Asten, “Geological Control on the Three-Component Spectra of Rayleigh-Wave Microseisms,” Bull. Seismol. Soc. Am. 68(6), 1623–1636 (1978).

    Google Scholar 

  6. M. W. Asten and J. D. Henstridge, “Array Estimators and the Use of Microseisms for Reconnaissance of Sedimentary Basins,” Geophysics 49, 1828–1837 (1984).

    Article  Google Scholar 

  7. P. Bard, “Microtremor Measurements: A Tool for the Effect Estimation?,” in State-of-the-Art Paper, Second International Symposium on The Effects of Surface Geology on Seismic Motion, Yokohama, December 1–3, 1998, Ed. by K. Irikura, K. Kudo, H. Okada, and T. Satasini (Balkeman, Rotterdam, 1999) pp. 1251–1279.

    Google Scholar 

  8. P. Beauduin, P. Lognonne, J. Montagner, et al., “The Effect of Atmospheric Pressure Changes on Seismic Signals, or How to Improve the Quality of a Station,” Bull. Seismol. Soc. Am. 86, 1760–1799 (1996).

    Google Scholar 

  9. D. M. Boore, “Finite Difference Methods for Seismic Waves Propagation in Heterogeneous Materials,” in Methods in Computational Physics (Academic, New York, 1972), pp. 1–137.

    Google Scholar 

  10. P. D. Bromirski, “Vibrations from the ‘Perfect Storm’,” Geochem. Geophys. Geosyst. 2(7), Paper no. 2000GC000119 (2001).

    Google Scholar 

  11. COMSOL Multiphysics Reference Guide; Structural Mechanics Module Reference Guide; Script Reference Guide; Multiphysics Scripting Guide (1994–2007) (http://www.comsol.com).

  12. T. Cheshitev, Ts. Chontova, N. Popov, and E. Koyumdzhieva, Geological Map of Bulgaria (1:1000000) (Moscow, 1991) [in Russian].

  13. I. Cho, T. Tada, and Y. Shiozaki, “A New Method to Determine Phase Velocities of Rayleigh Waves from Microseisms,” Geophysics 69(6), 1535–1551 (2004).

    Article  Google Scholar 

  14. T. B. Dobrev, “Basement Structure of the Moesian Platform in Bulgaria,” Sov. Geol., No. 11, 44–54 (1966).

  15. L. A. Drake, “Rayleigh Waves at the Continental Boundary by Finite Element Method,” Bull. Seismol. Soc. Am. 62, 1259–1268 (1972).

    Google Scholar 

  16. D. Far, F. Kind, and D. Giardini, “Inversion of Local S-Wave Velocity Structures from Average H/V Ratios, and Their Use for the Estimation of Site-Effects,” J. Seismol. 7, 449–467 (2007).

    Google Scholar 

  17. E. H. Field, S. E. Hough, and K. H. Jacob, “Using Microtremors to Assess Potential Earthquake Site Response: A Case Study in Flushing Meadows, New York City,” Bull. Seismol. Soc. Am. 80, 1456–1480 (1990).

    Google Scholar 

  18. B. B. Golitsyn, Lectures on Seismometry (IAN, St. Petersburg, 1912) [in Russian].

    Google Scholar 

  19. A. V. Gorbatikov, RF Patent No. RU2271554 (2005).

  20. A. V. Gorbatikov, “Possible Estimation of Parameters of Geological Objects by Using the Background Microseismic Field: Experimental and Modeling Results,” in Modern Methods of Processing and Interpretation of Seismological Data. Proc. Int. Seismol. Workshop, Ed. by A.A. Malovichko et al. (Obninsk, 2006), pp. 66–71 [in Russian].

  21. A. V. Gorbatikov and V. L. Barabanov, “Experience of Using Microseisms for the Estimation of the Upper Crust State,” Fiz. Zemli, No. 7, 85–90 (1993).

  22. A. Gorbatikov, A. Kalinina, S. Moiseenko, et al., “Monitoring of Oil-and-Gas Objects by Microseismic Sounding,” Tekhnologii TEK. Neft’ i Kapital, No. 1(14), 20–26 (2004a).

    Google Scholar 

  23. A. V. Gorbatikov, A. V. Kalinina, V. A. Volkov, et al., “Results of Analysis of Data of Microseismic Survey at Lanzarote Island, Canary, Spain,” Pure Appl. Geophys. 161, 1561–1578 (2004b).

    Article  Google Scholar 

  24. A. V. Gorbatikov and M. Yu. Stepanova, “Statistical Characteristics and Stationarity Properties of Low-Frequency Seismic Signals,” Fiz. Zemli, No. 1, 57–68 (2008) [Izvestiya, Phys. Solid Earth 44, 50–59 (2008)].

  25. S. Gregersen, “Possible Mode Conversion between Love and Rayleigh Waves at the Continental Margin,” Geophys. J. R. Astron. Soc. 54, 121–127 (1978).

    Google Scholar 

  26. M. Horike, “Inversion of Phase Velocity of Long-Period Microtremors to the S-Wave-Velocity Structure down to the Basement in Urbanized Areas,” J. Phys. Earth 33, 59–96 (1985).

    Google Scholar 

  27. J. A. Hudson and L. Knopoff, “Transmission and Reflection of Surface Waves at a Corner,” J. Geophys. Res. 69, 281 (1964).

    Article  Google Scholar 

  28. H. Kagami, S. Okada, K. Shinoko, et al., “Observation of 1 to 5 Second Microtremor and Their Application to Earthquake Engineering. Part III: A Two-Dimensional Study of Site Effects in S. Fernando Valley,” Bull. Seismol. Soc. Am. 76, 1801–1812 (1986).

    Google Scholar 

  29. K. Kanai and T. Tanaka, “Measurement of the Microtremor,” Bull. Earthq. Res. Inst. Univ. Tokyo 32, 199–209 (1954).

    Google Scholar 

  30. L. J. Katz and R. S. Bellon, “Microtremor Site Analysis Study at Beatty, Nevada,” Bull. Seismol. Soc. Am. 68, 757–765 (1978).

    Google Scholar 

  31. R. T. Lacoss, E. J. Kalley, and M. N. Toksoz, “Estimation of Seismic Noise Structure Using Arrays,” Geophysics 34(1), 21–38 (1969).

    Article  Google Scholar 

  32. A. I. Levin, T. V. Strel’tsova, M. Yu. Khakimov, et al., “Tectonics of the Moesian Plate Basement,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 8, 49 (1972).

  33. A. L. Levshin, T. B. Yanovskaya, A. V. Lander, et al., Surface Seismic Waves in a Horizontally Heterogeneous Earth (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  34. Y.-G. Li, K. Aki, D. Adams, et al., “Seismic Guided Waves Trapped in the Fault Zone of the Landers, California, Earthquake of 1992,” J. Geophys. Res. 99, 11 705–11 725 (1994).

    Google Scholar 

  35. P. Malishewski, “Surface Waves in Media Having Lateral Inhomogeneities,” Pure Appl. Geophys. 114, 833–843 (1976).

    Article  Google Scholar 

  36. T. Matsushima and H. Okada, “Determination of Deep Geological Structures under Urban Areas Using Long-Period Microtremors,” Butsuri-Tansa 43(1), 21–33 (1990).

    Google Scholar 

  37. A. McGarr and L. E. Alsop, “Transmission and Reflection of Rayleigh Waves at Vertical Boundaries,” J. Geophys. Res. 72, 2169–2180 (1967).

    Article  Google Scholar 

  38. F. I. Monakhov, Low-Frequency Seismic Noise of the Earth (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  39. F. G. Montesinos, J. Arnoso, M. Benavent, and R. Vieira, “The Crustal Structure of El Hierro (Canary Islands) from 3-D Gravity Inversion,” J. Volcanol. Geothermal Res. 150, 283–299 (2006).

    Google Scholar 

  40. Y. Nakamura, “A Method for Dynamic Characteristic Estimation of Subsurface Using Microtremor on the Ground Surface,” Quarterly Rep. Railway Technical Res. Inst. 30(1), 25–33 (1989).

    Google Scholar 

  41. T. Noguchi and R. Nishida, “Determination of Subsurface Structure of Tottori Plain Using Microtremors and Gravity Anomaly,” J. Natural Disaster Sci. 24(1), 1–13 (2002).

    Google Scholar 

  42. Y. Ohta, H. Kagami, N. Goto, and K. Kudo, “Observations of 1 to 5 Second Microtremor and Their Application to Earthquake Engineering. Part I: Comparison with Long-Period Accelerations at the Tokachi-Oki Earthquake of 1968,” Bull. Seismol. Soc. Am. 68, 767–779 (1978).

    Google Scholar 

  43. F. Omori, “On Microtremors,” Res. Imp. Earthquake Inv. Comm. 2, 1–6 (1908).

    Google Scholar 

  44. A. A. Panou, N. Theodulidis, P. M. Hatzidimitriou, et al., “Ambient Noise Horizontal-to-Vertical Spectral Ratio for Assessing Site Effects in Urban Environments: The Case of Thessaloniki City (Northern Greece),” Bull. Geol. Soc. Greece XXXVI, 1467–1476 (2004).

    Google Scholar 

  45. P. W. Rodgers, S. R. Taylor, and K. K. Nakanishi, “System and Site Noise in the Regional Seismic Test Network from 0.1 to 20 Hz,” Bull. Seismol. Soc. Am. 77, 663–678 (1987).

    Google Scholar 

  46. J. W. Schlue, “Seismic Surface Wave Propagation in Three Dimensional Finite-Element Structures,” Bull. Seismol. Soc. Am. 71, 1003–1010 (1981).

    Google Scholar 

  47. O. A. Shiryagin, Geoecological Aspect of Geodynamic Monitoring of the Astrakhan Gas Condensate Deposit, Cand. Sci. (Geol.-Mineral.) Dissertation, Astrakhan: Volgograd Architecture-Construction Acad., 2002.

    Google Scholar 

  48. V. N. Tabulevich, Multidisciplinary Studies of Microseismic Vibrations (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  49. F. E. Udwadia and M. D. Trifunac, “Comparison of Earthquake and Microtremor Ground Motions in El Centro, California,” Bull. Seismol. Soc. Am. 63, 1227–1253 (1973).

    Google Scholar 

  50. L. P. Vinnik, “Structure of 4 to 6 s Microseisms,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 10, 25–38 (1967).

  51. L. P. Vinnik and N. M. Pruchkina, “Structure of Short-Period Microseisms,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 5, 688–701 (1964).

  52. M. M. Withers, R. C. Asten, C. J. Young, and E. P. Chael, “High Frequency Analysis of Seismic Background Noise As a Function of Wind Speed and Shallow Depth,” Bull. Seismol. Soc. Am. 86, 1507–1515 (1996).

    Google Scholar 

  53. C. J. Young, E. P. Chael, M. M. Withers, and R. C. Asten, “A Comparison of the High-Frequency (>1 Hz) Surface and Subsurface Noise Environment at Three Sites in the United States,” Bull. Seismol. Soc. Am. 86(5), 1516–1528 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Gorbatikov, M.Yu. Stepanova, G.E. Korablev, 2008, published in Fizika Zemli, 2008, No. 7, pp. 66–84.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbatikov, A.V., Stepanova, M.Y. & Korablev, G.E. Microseismic field affected by local geological heterogeneities and microseismic sounding of the medium. Izv., Phys. Solid Earth 44, 577–592 (2008). https://doi.org/10.1134/S1069351308070082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351308070082

PACS numbers

Navigation