Skip to main content
Log in

Human Serum Albumin Interaction with Methyl Violet under the Influence of Millimeter-Range Electromagnetic Waves

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The effect of a millimeter-wave range of electromagnetic waves (MM EMW) on methyl or crystal violet interaction with human serum albumin (HSA) has been studied using UV-denaturation, fluorescence spectroscopy, and CD spectroscopy methods. It was revealed that MM EMW irradiation results in the weakening of the stability of HSA and decreases the interaction force between HSA and methyl violet (MV). It was also shown that MM EMW irradiation by non-resonant frequency of the water affects the structure of HSA immediately, and changes its secondary structure, while the irradiation by water-resonant frequency does not invoke structural changes, but weakens the stability to a higher degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Romanenko, S., Siegel, P.H., Wagenaar, D.A., and Pikov, V., J. Neurophysiol., 2014, vol. 112, p. 2423.

    Article  Google Scholar 

  2. Kalantaryan, V.P., Martirosyan, R., Babayan, Y., and Khazaryan, R., Progress in Electromagnetic Research Lett., 2020, vol. 91, p. 49.

    Article  Google Scholar 

  3. Daniels, R.C., Murdock, J.N., Rappaport, T.S., and Rappaport, R.W., IEEE Microw Mag., 2010, vol. 11, p. 44.

    Article  Google Scholar 

  4. Verma, L., Fakharzadeh, M., and Sunghyun, C., IEEE Wirel Commun., 2013, vol. 20, p. 30.

    Article  Google Scholar 

  5. Hasch, J., Topak, E., Schnabel, R., Zwick, T., Weigel, R., and Waldschmidt, C., IEEE Trans. Microw. Theory Tech., 2012, vol. 60, p. 845.

    Article  ADS  Google Scholar 

  6. Salford, L.G., Nittby, H., Brun, A., Grafstrom, G., Malmgren, L., Sommarin, M., Eberhardt, J., Widegren, B., and Persson, B.R.R., Prog. Theor. Phys., 2008, vol. 173, p. 283.

    Article  Google Scholar 

  7. Vardevanyan, P.O., Antonyan, A.P., Shahinyan, M.A., and Mikaelyan, M.S., J. Appl. Spectroscopy, 2016, vol. 83, p. 496.

    Article  ADS  Google Scholar 

  8. Shahinyan, M.A., Antonyan, A.P., Kalantaryan, V.P., Mikaelyan, M.S., and Vardevanyan. P.O., J. Electromagnetic Waves and Applications, 2019, vol. 33, p. 2317.

    Article  ADS  Google Scholar 

  9. Roy, S., J. Pharmacology and Toxicological Studies, 2016, vol. 4, p. 7.

    Google Scholar 

  10. Zhang, G., Wang, L., and Pan, J., Agric. Food Chem., 2012, vol. 60, p. 2721.

    Article  Google Scholar 

  11. Yang, X., Ye, Z., Yuan, Y., Zheng, Z., Shi, J., Ying, Y., and Huang, P., Luminescence, 2013, vol. 28, p. 427.

    Article  Google Scholar 

  12. Qin, M., Yin, T., and Shen, W., J. Dispersion Sci. Tech., 2016, vol. 37, p. 1623.

    Article  Google Scholar 

  13. Hu, Y., Xu, S., Zhu, X., and Gong, A., Spectrochimica Acta Part A: Molecular and Biomol. Spectroscopy, 2009, vol. 74, p. 526.

    Article  ADS  Google Scholar 

  14. Moreno, F., Cortijo, M., and Gonzalez-Jimenez, J., J. Photochem. Photobiol., 1999, vol. 70, p. 685.

    Google Scholar 

  15. Grundler, W. And Kaiser, F., Nanobiology, 1992, vol. 1, p. 163.

    Google Scholar 

  16. Shckorbatov, Y.G., Grigoryeva, N.N., Shakhbazov, V.G., Grabina, V.A., and Bogoslavsky, A.M., Bioelectromagnetics, 1998, vol. 19, p. 414.

    Article  Google Scholar 

  17. Vardevanyan, P.O., Shahinyan, M.A., Vardanyan, A.V., and Grigoryan, S.V., Proc. The YSU: Chem. Biol. Sci., 2021, vol. 55, p. 136.

    Google Scholar 

  18. Vardevanyan, P.O., Antonyan, A.P., Shahinyan, M.A., and Mikaelyan, M.S., J. Appl. Spectroscopy, 2016, vol. 83, p. 486.

    Article  ADS  Google Scholar 

  19. Gapeyev, A.B., Mikhalik, E.N., and Chemeris, N.K., Bioelectromagnetics, 2008, vol. 29, p. 197.

    Article  Google Scholar 

  20. Shahinyan, M.A., Antonyan, A.P., Mikaelyan, M.S., and Vardevanyan, P.O., Biophys. Rev. Lett., 2015, vol. 10, p. 201.

    Article  Google Scholar 

  21. Zhu, X., Hu, Y., and Gong, A., Anal. Chim. Acta, 2007, vol. 92, p. 24.

    Article  Google Scholar 

  22. Antonyan, A.P., Shahinyan, M.A., Petrosyan, N.H., and Vardevanyan, P.O., Biolog. J. Armenia, 2020, vol. 72, p. 61.

    Google Scholar 

  23. Vardevanyan, P.O., Shahinyan, M.A., Petrosyan, N.H., and Mamasakhlisov, Y.S., J. Contemp. Phys., 2021, vol. 56, p. 60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Vardevanyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardevanyan, P.O., Shahinyan, M.A., Parsadanyan, M.A. et al. Human Serum Albumin Interaction with Methyl Violet under the Influence of Millimeter-Range Electromagnetic Waves. J. Contemp. Phys. 58, 198–203 (2023). https://doi.org/10.1134/S1068337223020160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337223020160

Keywords:

Navigation