Skip to main content
Log in

Jaynes-Cummings Model in Counter Propagating Waves Basis: Large Numbers of Excitations

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The Jaynes-Cummings (JC) model is presented based on quantized counterpropagating waves, characteristic of a ring resonator. This model, in addition to the Hamiltonian and the operator of the number of excitations, includes an interference operator whose eigenvalues imitate the term cos 2kz of the classical picture of the field. The average number of photons, dispersion, the Mandel parameter Q, and atomic-photon entanglement in states with certain excitations are considered. The collapses and revivals are revealed, which in the standard JC model are present only in states with an indefinite number of excitations. It is shown that photons at the boundary energy levels are antibunched (with Q ≈ –1/2) regardless of the system’s parameters, and photons of other energy levels are grouped to the degree that grows with the total number of photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Jaynes, E.T. and Cummings, F.W., Proc IEEE, 1963, vol. 51, p. 89.

    Article  Google Scholar 

  2. Shore, B.W. and Knight, P.L., J. Mod. Opt., 1993, vol. 40, p. 1195.

    Article  ADS  Google Scholar 

  3. Allen, L. and Eberly, J.H., Optical Resonance and Two-Level Atoms. New York: Dover, 1987.

    Google Scholar 

  4. Gerry, C.C. and Knight, P.L., Introductory Quantum Optics. Cambridge: Cambridge University Press, 2005.

    Google Scholar 

  5. Walls, D.F. and Milburn, G.J., Quantum Optics. Berlin: Springer-Verlag, 2008.

    Book  MATH  Google Scholar 

  6. Grynberg, G., Aspect, A., and Fabre, C., Introduction to Quantum Optics. New York: Cambridge University Press, 2010.

    Book  MATH  Google Scholar 

  7. Haroche, S. and Kleppner, D., Physics Today, 1989, vol. 42, p. 24.

    Article  ADS  Google Scholar 

  8. Reiserer, A. and Rempe, G., Rev. Mod. Phys., 2015, vol. 87, p. 1379.

    Article  ADS  Google Scholar 

  9. Greentree, A.D., Koch, J., and Larson, J., J. Phys. B, 2013, vol. 46, p. 220201.

    Article  ADS  Google Scholar 

  10. Larson, J. and Mavrogordatos, T., arXiv:2202.00330v1 (2022).

  11. Shore, B.W., Meystre, P., and Stenholm, S., J. Opt. Soc. Am., 1991, vol. 8, p. 903.

    Article  ADS  Google Scholar 

  12. Muradyan, A.Zh. and Muradyan, G.A., J. Phys. B, 2002, vol. 35, p. 3995.

    Article  ADS  Google Scholar 

  13. Tavis, M. and Cummings, F.W., Phys. Rev., 1968, vol. 170, p. 379.

    Article  ADS  Google Scholar 

  14. Arimondo, E., Bambini, A., and Stenholm, S., Phys. Rev. A, 1981, vol. 24, p. 898.

    Article  ADS  Google Scholar 

  15. Muradyan, A.Zh., Izv. NAS of Armenia, Physics, 1995, vol. 30, p. 114 [In Russian].

    Google Scholar 

  16. Karlov, N.V., Lectures on Quantum Electronics. CRC Press Inc, 1992.

    Google Scholar 

Download references

Funding

The work was supported by the Science Committee of the Ministry of Education, Science, Culture and Sports of the Republic of Armenia at the Laboratory for Research and Modeling of Quantum Phenomena at Yerevan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zh. Muradyan.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muradyan, A.Z. Jaynes-Cummings Model in Counter Propagating Waves Basis: Large Numbers of Excitations. J. Contemp. Phys. 58, 134–139 (2023). https://doi.org/10.1134/S1068337223020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337223020159

Keywords:

Navigation